Funds are requested to purchase a direct electron detector and advanced operating software for a Titan Krios transmission electron microscope. The new generation of direct electron detectors replace scintillators and CCDs for recording EM images, and offer a highly dramatic improvement in both sensitivity and resolution. The Falcon II camera requested will also offer a three-fold increase in the data collection rate over our existing CCD camera, but the main advantage comes from the huge increase in the signal-to-noise ratio and the greatly improved point spread function. While the three-fold increase in the rate of acquiring images could be met with our existing CCD camera by simply acquiring images over a three-fold longer period, no amount of images acquired with the CCD would ever recover the high resolution information that is either completely absent in the CCD images or buried in the noise. These advances with the direct electron detector will allow us to image a large number of specimens at an unprecedented resolution, greatly aiding a number of NIH-supported projects. Four Major Users (Egelman, Yeager, Stewart and Zhang) and a number of Minor Users will use the Titan Krios as a shared facility. The incredible throughput of this microscope with the proposed camera (~ 2,000 images per day), combined with the robotic operation of the microscope on a 24/7 schedule, means that data analysis will become the rate-limiting step and not image acquisition. This high resolution, high throughput mode of imaging will largely transform EM. Thus, our Krios can truly function as a facility much like synchrotrons do in providing a unique service to the structural biology community. The specimens that will be examined at high resolution on the Krios with the proposed detector range from viruses and bacterial pili to complexes involved in the innate immune recognition of foreign RNA, allowing for conceptual advances in understanding many systems that are important to human health.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
Biomedical Research Support Shared Instrumentation Grants (S10)
Project #
1S10OD018149-01
Application #
8640504
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Levy, Abraham
Project Start
2014-06-01
Project End
2015-05-31
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Virginia
Department
Biochemistry
Type
Schools of Medicine
DUNS #
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Risi, Cristina; Belknap, Betty; Forgacs-Lonart, Eva et al. (2018) N-Terminal Domains of Cardiac Myosin Binding Protein C Cooperatively Activate the Thin Filament. Structure 26:1604-1611.e4
Spaulding, Caitlin N; Schreiber 4th, Henry Louis; Zheng, Weili et al. (2018) Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions. Elife 7:
Liu, Ying; Osinski, Tomasz; Wang, Fengbin et al. (2018) Structural conservation in a membrane-enveloped filamentous virus infecting a hyperthermophilic acidophile. Nat Commun 9:3360
Dhindwal, Sonali; Lobo, Joshua; Cabra, Vanessa et al. (2017) A cryo-EM-based model of phosphorylation- and FKBP12.6-mediated allosterism of the cardiac ryanodine receptor. Sci Signal 10:
Wang, Fengbin; Coureuil, Mathieu; Osinski, Tomasz et al. (2017) Cryoelectron Microscopy Reconstructions of the Pseudomonas aeruginosa and Neisseria gonorrhoeae Type IV Pili at Sub-nanometer Resolution. Structure 25:1423-1435.e4
Avery, Adam W; Fealey, Michael E; Wang, Fengbin et al. (2017) Structural basis for high-affinity actin binding revealed by a ?-III-spectrin SCA5 missense mutation. Nat Commun 8:1350
Wang, Haoqing; Gristick, Harry B; Scharf, Louise et al. (2017) Asymmetric recognition of HIV-1 Envelope trimer by V1V2 loop-targeting antibodies. Elife 6:
Wang, Fengbin; Burrage, Andrew M; Postel, Sandra et al. (2017) A structural model of flagellar filament switching across multiple bacterial species. Nat Commun 8:960
Organtini, Lindsey J; Shingler, Kristin L; Ashley, Robert E et al. (2017) Honey Bee Deformed Wing Virus Structures Reveal that Conformational Changes Accompany Genome Release. J Virol 91:
Kolappan, Subramania; Coureuil, Mathieu; Yu, Xiong et al. (2016) Structure of the Neisseria meningitidis Type IV pilus. Nat Commun 7:13015

Showing the most recent 10 out of 12 publications