We propose a """"""""data commons"""""""" to provide data storage for seven core facilities that produce or analyze large and complex datasets for biomedical researchers at Duke University and their collaborators worldwide. With data storage requirements already counting in hundreds of terabytes the core facilities continue to adopt new technologies that will further increase the flows of data by orders of magnitude, a looming challenge for data retention and analysis. Our proposal seeks to turn this excess of data from a challenge to strength for life sciences researchers. Equipment purchased with the NIH SIG grant will use a mixture of disc arrays (~450 usable terabytes) and tape library with initial uncompressed data capacity of 1 petabyte to create a scalable data storage resource with features that protect and preserve data and manage data efficiently. Disc arrays will be configured to serve up data to existing computational servers for analysis either by researchers or by staff in Duke's """"""""Omics Analysis Core Facility,"""""""" which was created in 2012 to provide support to researchers unfamiliar with using genomic data sets. The disc arrays and tape library will function in a coordinated fashion in a Quantum """"""""Stornext"""""""" file system, and data management policies and system usage data collection will allow for fine-grained optimization of system performance and economy. The Quantum systems have been widely deployed in data-intensive industry and research, including in the genome sciences. From the outset, the core facilities will use the equipment to enhance their integration. Data provenance and management features of the Duke's Express Data Repository - used by the proteomics and microarray core facilities since 2006 - will be attached to the proposed storage equipment so that services can be expanded to include sequence data, RNAi screening data, microscopy images, and results from the analysis core. Thus, the proposed data commons will function in a manner allowing for efficient and, in many cases, automatic data hand-offs within a protected storage framework. This integration removes logistical impediments for data integration, reduces chances for accidental (or malicious) data corruption, and enhances the scope of automation for large-scale research projects. The storage will be connected via the cores to data-producing equipment and to computational servers run by the 'omics analysis core and to storage on a high-performance analysis cluster. All IT assets, including the proposed equipment, are administered by professional IT staff with particular strength in infrastructure required for large-scale research in the genome sciences. While increase in efficiency of data management will be an immediate benefit, the more important goal of the project is to enable researchers to speed their use of integrated and complex data to explore the complexity of human health and disease.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
Biomedical Research Support Shared Instrumentation Grants (S10)
Project #
1S10OD018164-01
Application #
8640394
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Levy, Abraham
Project Start
2014-07-18
Project End
2015-07-17
Budget Start
2014-07-18
Budget End
2015-07-17
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Duke University
Department
Type
Schools of Medicine
DUNS #
City
Durham
State
NC
Country
United States
Zip Code
27705
Allen, Annamarie E; Locasale, Jason W (2018) Glucose Metabolism in Cancer: The Saga of Pyruvate Kinase Continues. Cancer Cell 33:337-339
Loguercio, Salvatore; Barajas-Mora, E Mauricio; Shih, Han-Yu et al. (2018) Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci. Front Immunol 9:425
Feng, Yun; Wang, Yanru; Liu, Hongliang et al. (2018) Novel genetic variants in the P38MAPK pathway gene ZAK and susceptibility to lung cancer. Mol Carcinog 57:216-224
Mortensen, Richard D; Moore, Regan P; Fogerson, Stephanie M et al. (2018) Identifying Genetic Players in Cell Sheet Morphogenesis Using a Drosophila Deficiency Screen for Genes on Chromosome 2R Involved in Dorsal Closure. G3 (Bethesda) 8:2361-2387
DeFilipp, Zachariah; Peled, Jonathan U; Li, Shuli et al. (2018) Third-party fecal microbiota transplantation following allo-HCT reconstitutes microbiome diversity. Blood Adv 2:745-753
Shen, Ning; Zhao, Jingkang; Schipper, Joshua L et al. (2018) Divergence in DNA Specificity among Paralogous Transcription Factors Contributes to Their Differential In Vivo Binding. Cell Syst 6:470-483.e8
Lin, Jiaxing; Gresham, Jeremy; Wang, Tongrong et al. (2018) bcSeq: an R package for fast sequence mapping in high-throughput shRNA and CRISPR screens. Bioinformatics 34:3581-3583
Chapman, Nicole M; Zeng, Hu; Nguyen, Thanh-Long M et al. (2018) mTOR coordinates transcriptional programs and mitochondrial metabolism of activated Treg subsets to protect tissue homeostasis. Nat Commun 9:2095
Posfai, Dora; Sylvester, Kayla; Reddy, Anupama et al. (2018) Plasmodium parasite exploits host aquaporin-3 during liver stage malaria infection. PLoS Pathog 14:e1007057
Bushdid, C; de March, C A; Fiorucci, S et al. (2018) Agonists of G-Protein-Coupled Odorant Receptors Are Predicted from Chemical Features. J Phys Chem Lett 9:2235-2240

Showing the most recent 10 out of 154 publications