Throughout the last decade, the use of bioluminescence reporter systems has seen an exponential growth in research applications. As a result, bioluminescence imaging (BLI) has become an indispensible component of molecular imaging at Washington University and throughout the world. The use of multiple imaging modalities to address biological questions is now commonplace in imaging research laboratories. In a new twist on BLI, Robertson et al. (Phys Med Biol 2009) showed that the IVIS 100 and 200 BLI scanners (which have now been replaced by the IVIS Lumina and Spectrum, respectively) could consistently detect a Cerenkov light signal from 18F and 13N nuclides. Cerenkov radiation is produced when a charged particle travels with a velocity that exceeds the speed of light through an insulating medium. Cerenkov radiation is produced in a continuous spectrum from the near ultraviolet through the visible spectrum, distributed inversely proportional to the squire of the wavelength. """"""""Cerenkov luminescence imaging"""""""" (CLI) was described for in vivo imaging of mice with radiopharmaceuticals that emit either positron or beta minus, and demonstrated a good correlation with 18FDG PET in detecting a subcutaneous tumor implant. Independently, another group of researchers (Liu et al, PLoS One 2010) validated CLI with additional positron and beta minus emitters. We propose the purchase of an IVIS Lumina II XR (Caliper Life Sciences, Inc.), a new generation molecular imaging tool capable of detecting luminescence, fluorescence, and x-ray emissions. The introduction of concomitant x-ray imaging with bioluminescence provides an additional degree of resolution by putting the bioluminescence signal in anatomical context. Our intended use of the IVIS Lumina II XR can be separated into three general categories: 1) projects that involve CLI;2) projects that involve BLI and fluorescence imaging for monitoring targeted radiotherapy with beta emitting radiopharmaceuticals;and 3) traditional BLI experiments. The CLI applications will focus on developing high throughput assessment of novel PET radiopharmaceuticals. Washington University has the ideal faculty and resources to more fully develop the new CLI technology. We have 8 NIH-funded users developing radiopharmaceuticals and multimodality imaging agents, and one of them (Dr. Tai) develops PET/optical instrumentation. The existing faculty, facilities and resources at WU, together with strong institutional support, will ensure that the IVIS Lumina II XR will be utilized and developed further for a new, cutting-edge technology, which will benefit WU as a university, as well as the imaging community as a whole. Public Health Relevance: Molecular imaging is a science involving non-invasive imaging of molecular processes. We propose to purchase an IVIS Lumina II XR (Caliper Life Sciences, Inc.), a new generation molecular imaging tool capable of detecting luminescence, fluorescence, and x-ray emissions. Washington University will use the instrument primarily for """"""""Cerenkov luminescence imaging"""""""" a cutting-edge technology designed for high throughput radiopharmaceutical development.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biomedical Research Support Shared Instrumentation Grants (S10)
Project #
1S10RR031625-01
Application #
8052174
Study Section
Special Emphasis Panel (ZRG1-SBIB-D (30))
Program Officer
Levy, Abraham
Project Start
2011-04-01
Project End
2012-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
1
Fiscal Year
2011
Total Cost
$217,624
Indirect Cost
Name
Washington University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Miller, Jessica; Wang, Steven T; Orukari, Inema et al. (2018) Perfusion-based fluorescence imaging method delineates diverse organs and identifies multifocal tumors using generic near-infrared molecular probes. J Biophotonics 11:e201700232
Zheleznyak, Alexander; Shokeen, Monica; Achilefu, Samuel (2018) Nanotherapeutics for multiple myeloma. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10:e1526
Gilson, Rebecca C; Black, Kvar C L; Lane, Daniel D et al. (2017) Hybrid TiO2 -Ruthenium Nano-photosensitizer Synergistically Produces Reactive Oxygen Species in both Hypoxic and Normoxic Conditions. Angew Chem Int Ed Engl 56:10717-10720
Miller, Jessica P; Habimana-Griffin, LeMoyne; Edwards, Tracy S et al. (2017) Multimodal fluorescence molecular imaging for in vivo characterization of skin cancer using endogenous and exogenous fluorophores. J Biomed Opt 22:66007
Mondal, Suman B; Gao, Shengkui; Zhu, Nan et al. (2017) Optical See-Through Cancer Vision Goggles Enable Direct Patient Visualization and Real-Time Fluorescence-Guided Oncologic Surgery. Ann Surg Oncol 24:1897-1903
Som, Avik; Bloch, Sharon; Ippolito, Joseph E et al. (2016) Acidic extracellular pH of tumors induces octamer-binding transcription factor 4 expression in murine fibroblasts in vitro and in vivo. Sci Rep 6:27803
Miller, Jessica P; Egbulefu, Christopher; Prior, Julie L et al. (2016) Gradient-Based Algorithm for Determining Tumor Volumes in Small Animals Using Planar Fluorescence Imaging Platform. Tomography 2:17-25
Komarov, Sergey; Zhou, Dong; Liu, Yongjian et al. (2015) Cherenkov luminescence imaging in transparent media and the imaging of thin or shallow sources. J Biomed Opt 20:036011
Kotagiri, Nalinikanth; Sudlow, Gail P; Akers, Walter J et al. (2015) Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers. Nat Nanotechnol 10:370-9
Gilson, Rebecca C; Tang, Rui; Som, Avik et al. (2015) Protonation and Trapping of a Small pH-Sensitive Near-Infrared Fluorescent Molecule in the Acidic Tumor Environment Delineate Diverse Tumors in Vivo. Mol Pharm 12:4237-46

Showing the most recent 10 out of 11 publications