Gliomas are tumors of glial cell origin, with glioblastoma multiforme being one of the most aggressive forms of brain cancer. Unlike normal glia, glioma cells express low levels of functional connexin (Cx) hemichannel/gap junction protein and high levels of polyamines (PA). A lot of attention in the anti-cancer strategies focuses on either (i) PA or (ii) Cxs, although there is not very much known about how PA and Cx hemichannels/gap- junctions co-interact. Expression of Cx in glioma cells is found predominantly in the cytoplasm with very little cell surface expression. In spite of this, there is still highly functional gap junctional intercellular communication between glioma cells. It is unclear how low levels of cell surface Cx expression allow such high gap junctional intercellular communication between glioma cells. Our preliminary data indicate that (1) PA eliminate cationic block of Cx43 gap junctions/hemichannels and (2) increase their open probability. Based on these findings, we hypothesize that high levels of PA present in glioma cells potentiate Cx43 channel opening and enhance gap junctional intercellular communication. As a result, propagation of the intercellular signals through Cx43 gap junctions/hemichannels will be elevated. On the other hand, it was recently shown that intracellular PA block Cx40 gap junctions demonstrating a different effect of PA on different types of Cxs. Currently, there is no data about PA and Cxs (other than Cx43) in glial cells. The present study will examine the interaction between polyamines and Cx hemichannels/gap junctions in normal and malignant glia. To test our hypothesis we propose the following specific aims:
Specific Aim 1 : To determine the polyamine dependence of connexin hemichannel currents and gap junction communication in astrocytes, Cxs transfected cells and Cx43 conditional knock-out mice.
Specific Aim 2 : To determine how different types of Cxs overexpressed in glioma cells participate in gap junction intercellular communication and may contribute during cancer treatment. Significance: The results of these studies will provide a link between two targets of anti-cancer therapy; connexins and polyamines. We will define the effects polyamines on the different Cxs. This knowledge will help us to develop an effective strategy to treat cancer cells when the levels of PA are elevated. By regulation of Cxs, we can modulate gap junctional intercellular communication between glioma cells and potentially communication between glioma cells and the normal astrocytes in the tumor microenvironment.

Public Health Relevance

The results of these studies will provide a link between two targets of anti-cancer therapy; connexins and polyamines. We will define the effects polyamines on the different Cxs. This knowledge will help us to develop an effective strategy to treat cancer cells when the levels of PA are elevated. By regulation of Cxs, we can modulate gap junctional intercellular communication between glioma cells and potentially communication between glioma cells and the normal astrocytes in the tumor microenvironment.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Pilot Research Project (SC2)
Project #
5SC2GM095410-03
Application #
8831696
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Nie, Zhongzhen
Project Start
2013-08-01
Project End
2017-04-30
Budget Start
2015-05-01
Budget End
2017-04-30
Support Year
3
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Universidad Central Del Caribe
Department
Biochemistry
Type
Schools of Medicine
DUNS #
090534694
City
Bayamon
State
PR
Country
United States
Zip Code
Kucheryavykh, Lilia Y; Benedikt, Jan; Cubano, Luis A et al. (2017) Polyamines preserve connexin 43-mediated gap junctional communication during intracellular hypercalcemia and acidosis. Neuroreport 28:208-213
Skatchkov, Serguei N; Bukauskas, Feliksas F; Benedikt, Jan et al. (2015) Intracellular spermine prevents acid-induced uncoupling of Cx43 gap junction channels. Neuroreport 26:528-32
Huertas, Adriana; Wessinger, William D; Kucheryavykh, Yuri V et al. (2015) Quinine enhances the behavioral stimulant effect of cocaine in mice. Pharmacol Biochem Behav 129:26-33
Rolón-Reyes, Kimberleve; Kucheryavykh, Yuriy V; Cubano, Luis A et al. (2015) Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway. PLoS One 10:e0131059
Rivera-Aponte, D E; Méndez-González, M P; Rivera-Pagán, A F et al. (2015) Hyperglycemia reduces functional expression of astrocytic Kir4.1 channels and glial glutamate uptake. Neuroscience 310:216-23
Zayas-Santiago, Astrid; Agte, Silke; Rivera, Yomarie et al. (2014) Unidirectional photoreceptor-to-Müller glia coupling and unique K+ channel expression in Caiman retina. PLoS One 9:e97155
Kucheryavykh, Lilia Y; Rolón-Reyes, Kimberleve; Kucheryavykh, Yuriy V et al. (2014) Glioblastoma development in mouse brain: general reduction of OCTs and mislocalization of OCT3 transporter and subsequent uptake of ASP+ substrate to the nuclei. J Neurosci Neuroeng 3:3-9