We propose to continue a highly successful Training Program in the Molecular Biology of Neurodegeneration - a program devoted to the training of pre- and postdoctoral students for careers as independent research scientists in universities and health-related research laboratories. The trainers are all Harvard faculty members with active research programs related to neurodegeneration, with an emphasis on Alzheimer's disease and other neurodegenerative disorders related to aging. They are drawn from the Harvard Medical School and six affiliated research hospitals: Beth Israel-Deaconess Medical Center, Brigham and Women's Hospital, Children's Hospital, Dana-Farber Cancer Institute, Massachusetts General Hospital, and McLean Hospital. Bringing a wide range of experience and experimental approaches to the problems of age-related neurodegeneration, the Program faculty includes molecular biologists, geneticists, cell biologists, neuropathologists, and biochemists. The predoctoral students are recruited into and drawn from the graduate students in the degree-granting Neuroscience Program of the Harvard Medical School. The postdoctoral students are chosen from among applicants nominated by individual faculty members of the Program. Selection of trainees occurs through a competitive process mediated by a Training Grant Advisory Committee. A total of six predoctoral trainees and eight postdoctoral trainees are proposed for a primary training faculty of 28 individuals experienced in basic and applied studies of age-related neurodegeneration. In all cases, the main criteria for successful candidates is dedication and interest in aging and neurodegeneration research and the highest level of academic achievement in their previous training. Students are required to participate in special neurodegeneration courses, seminars, journal clubs and symposia. Close monitoring of student progress and career advising provide an effective structure for the entire training process. The purpose of the Program is to create a framework within which the best training of future researchers devoted to problems in aging and neurodegeneration can take place, and the already extensive collaborative interactions among the Program faculty can be propagated at all levels, from student to Professor.

Public Health Relevance

The explosive increase in the prevalence of Alzheimer's disease and other neurodegenerative disorders in the aging population is one of the great medical challenges of the twenty-first century. The Training Program in the Molecular Biology of Neurodegeneration provides a framework within which the best training of future researchers devoted to curing neurodegenerative diseases can take place. The Program capitalizes on the extensive and concentrated effort in this area taking place at Harvard Medical School and its affiliated hospitals, and has succeeded in training some of the leading research scientists working at the frontiers of neurodegenerative disease research.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Institutional National Research Service Award (T32)
Project #
5T32AG000222-22
Application #
8459452
Study Section
Special Emphasis Panel (ZAG1-ZIJ-3 (J1))
Program Officer
Wise, Bradley C
Project Start
1992-09-30
Project End
2017-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
22
Fiscal Year
2013
Total Cost
$721,260
Indirect Cost
$46,316
Name
Harvard University
Department
Pathology
Type
Schools of Medicine
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Geerling, Joel C; Kim, Minjee; Mahoney, Carrie E et al. (2016) Genetic identity of thermosensory relay neurons in the lateral parabrachial nucleus. Am J Physiol Regul Integr Comp Physiol 310:R41-54
Leriche, Geoffray; Chen, Allen C; Kim, Sumin et al. (2016) Fluorescent Analogue of Batimastat Enables Imaging of α-Secretase in Living Cells. ACS Chem Neurosci 7:40-5
Mukerji, Shibani S; Locascio, Joseph J; Misra, Vikas et al. (2016) Lipid Profiles and APOE4 Allele Impact Midlife Cognitive Decline in HIV-Infected Men on Antiretroviral Therapy. Clin Infect Dis 63:1130-9
Shipman, Seth L; Nivala, Jeff; Macklis, Jeffrey D et al. (2016) Molecular recordings by directed CRISPR spacer acquisition. Science 353:aaf1175
Hong, Soyon; Beja-Glasser, Victoria F; Nfonoyim, Bianca M et al. (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352:712-6
Tasdemir-Yilmaz, Ozge E; Segal, Rosalind A (2016) There and back again: coordinated transcription, translation and transport in axonal survival and regeneration. Curr Opin Neurobiol 39:62-8
Chung, Won-Suk; Welsh, Christina A; Barres, Ben A et al. (2015) Do glia drive synaptic and cognitive impairment in disease? Nat Neurosci 18:1539-45
Lodato, Michael A; Woodworth, Mollie B; Lee, Semin et al. (2015) Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350:94-8
Okaty, Benjamin W; Freret, Morgan E; Rood, Benjamin D et al. (2015) Multi-Scale Molecular Deconstruction of the Serotonin Neuron System. Neuron 88:774-91
Srikanth, Priya; Han, Karam; Callahan, Dana G et al. (2015) Genomic DISC1 Disruption in hiPSCs Alters Wnt Signaling and Neural Cell Fate. Cell Rep 12:1414-29

Showing the most recent 10 out of 74 publications