The goal of the Yale Interdisciplinary Immunology Training Program (YIITP) is to equip predoctoral and postdoctoral trainees with the intellectual and research foundations necessary to become independent scientists/educators investigating the immune system and its roles in human disease. The YIITP combines rigorous research training in a highly collaborative, interactive environment with a thorough academic program of instruction in immunology, microbiology, and related disciplines. The program offers training in virtually all aspects of immunology as well as host-pathogen interactions and a variety of autoimmune and inflammatory disorders. Areas of particular strength include innate immune recognition and function, lymphocyte development, immunological tolerance and memory, antigen presentation, immune cell signaling, the immune response to infectious organisms, vascular endothelial cells, cancer immunology, and autoimmune diseases such as Type 1 diabetes, multiple sclerosis, and systemic lupus erythematosus. The 35 YIITP mentors, who have primary appointments in 8 different Yale departments, have an outstanding record of research accomplishment and training and many are leaders in their fields. The YIITP is overseen by the Program Director, David Schatz, and an Executive Committee of four additional faculty members. The principal training entity is the Department of Immunobiology, whose graduate program was the top ranked immunology graduate program in the United States in a 2010 National Research Council study. All students admitted to the YIITP have at least a Bachelor's degree in a relevant field and enter via application to the Yale interdepartmental program in Biological and Biomedical Sciences (BBS). Postdocs enter from the labs of YIITP faculty, and hold a Ph.D. and/or M.D. degree. Predoctoral training leading to the Ph.D. degree involves formal course work in Immunology and other areas of biology, research rotations, teaching, and the qualifying exam in the first two years, with dissertation research beginning late in year one and becoming the primary focus of activity after completion of the qualifying exam. Postdoctoral training focuses intensively on research in the laboratory of one or more of the mentors. Both predoctoral and postdoctoral training are enriched by intensive training in the methods, logic, and responsible conduct of research, and by the many opportunities for collaboration and interaction. The vast majority of YIITP trainees go on obtain independent research and teaching positions at academic institutions or research positions in biotechnology companies. Extensive efforts are made by YIITP mentors and Yale Graduate and Medical Schools to attract and retain trainees from diverse backgrounds, particularly under-represented minority groups. This proposal requests continued support for 10 predoctoral and 3 postdoctoral trainees who will be supported by this grant for a maximum of 2 years. A major recent improvement in the program comes in the form of full institutional support from Yale for first year graduate students, allowing YIITP funding to be restricted to 2nd and 3rd year students.

Public Health Relevance

The Interdisciplinary Immunology Training Program at Yale University supports the education and training of the next generation of scientists who will study the immune system, the system of the body responsible for combating infectious diseases. Graduates from this program go on to leading positions in universities and industry, where they contribute to finding new vaccines, new therapies to combat viruses and bacteria, and new treatments for autoimmune diseases such as diabetes, lupus, and rheumatoid arthritis and hypersensitivity disorders such as asthma.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Institutional National Research Service Award (T32)
Project #
5T32AI007019-38
Application #
8502600
Study Section
Allergy & Clinical Immunology-1 (AITC)
Program Officer
Prograis, Lawrence J
Project Start
1976-07-01
Project End
2017-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
38
Fiscal Year
2013
Total Cost
$474,961
Indirect Cost
$25,701
Name
Yale University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Herndler-Brandstetter, Dietmar; Shan, Liang; Yao, Yi et al. (2017) Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc Natl Acad Sci U S A 114:E9626-E9634
Hughes, Lindsey D; Bosurgi, Lidia; Ghosh, Sourav et al. (2017) Chronicles of Cell Death Foretold: Specificities in the Mechanism of Disposal. Front Immunol 8:1743
Jurado, Kellie A; Yockey, Laura J; Wong, Patrick W et al. (2017) Antiviral CD8 T cells induce Zika-virus-associated paralysis in mice. Nat Microbiol :
Iwasaki, Akiko; Foxman, Ellen F; Molony, Ryan D (2017) Early local immune defences in the respiratory tract. Nat Rev Immunol 17:7-20
Simoni, Michael K; Jurado, Kellie Ann; Abrahams, Vikki M et al. (2017) Zika virus infection of Hofbauer cells. Am J Reprod Immunol 77:
Laidlaw, Brian J; Schmidt, Timothy H; Green, Jesse A et al. (2017) The Eph-related tyrosine kinase ligand Ephrin-B1 marks germinal center and memory precursor B cells. J Exp Med 214:639-649
Ring, Nan Guo; Herndler-Brandstetter, Dietmar; Weiskopf, Kipp et al. (2017) Anti-SIRP? antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc Natl Acad Sci U S A 114:E10578-E10585
Bosurgi, Lidia; Cao, Y Grace; Cabeza-Cabrerizo, Mar et al. (2017) Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science 356:1072-1076
Uraki, Ryuta; Hwang, Jesse; Jurado, Kellie Ann et al. (2017) Zika virus causes testicular atrophy. Sci Adv 3:e1602899
Goldberg, Emily L; Asher, Jennifer L; Molony, Ryan D et al. (2017) ?-Hydroxybutyrate Deactivates Neutrophil NLRP3 Inflammasome to Relieve Gout Flares. Cell Rep 18:2077-2087

Showing the most recent 10 out of 134 publications