The UCSF Immunology Training Program encompasses 46 laboratories engaged in molecular, cellular, and in vivo immunology and actively training ~250 graduate and postdoctoral scientists. Areas of active research include many areas of contemporary immunology such as lymphocyte cell surface receptor function and mechanisms of signaling;mechanisms of innate immune recognition;lymphocyte and leukocyte cell biology, adhesion and migration;cytokine expression and in vivo function;CD4 T cell effector and regulatory function;cytotoxic T cell and NK cell function;microRNA regulation of immune cell function, lymphocyte development, hematopoiesis and their relationship to leukemia and lymphoma;in vivo mechanisms of autoimmunity, allergy, and inflammatory diseases;human immunodeficiency;and immune defense against infectious agents including malaria, Histoplasma, Tuberculosis, and HIV. Over the past 29 years, a vital graduate training program leading to the Ph.D. has been developed by the immunology program faculty and has been supported by this training grant for the past 25 years. This program is designed to provide a solid background in genetics, cell biology, molecular biology, and mammalian tissue and organ biology as well as thorough training in modern immunology. The interdisciplinary nature of this training is enhanced by the affiliation of the Immunology Program with the UCSF Biomedical Sciences Program (BMS), an interdisciplinary program that also includes the study of infectious agents and inflammatory processes as well as other aspects of mammalian tissue/organ development, function, and disease. In addition to formal coursework and thesis research, the Immunology Program includes an active weekly seminar series of outside immunology speakers, both Immunology and BMS student-faculty journal clubs, an annual Immunology Program Retreat (held jointly with UC Berkeley immunologists), and seminar courses on advanced immunological topics. These activities provide an excellent training environment for postdoctoral fellows as well as for graduate students. Postdoctoral training is additionally enhanced by a postdoc research-in-progress seminar series and a recently developed postdoctoral mentoring program.

Public Health Relevance

Immunology is the study of the immune system, the major natural purpose of which is to defend us against infections. Additionally, it has been found that the immune system protects us from cancer, but when dysregulated causes tissue damage in autoimmune, allergic, and inflammatory diseases, and contributes importantly to the tissue damage and loss of function in a number of chronic diseases including atherosclerosis (heart disease and stroke), type 2 diabetes, and probably several degenerative neurological diseases such as Alzheimer's disease. This training program trains the next generation of scientists to study the immune system and develop new therapeutic approaches for its modulation as needed to ameliorate disease.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Allergy & Clinical Immunology-1 (AITC)
Program Officer
Prograis, Lawrence J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Schools of Medicine
San Francisco
United States
Zip Code
Bronevetsky, Yelena; Burt, Trevor D; McCune, Joseph M (2016) Lin28b Regulates Fetal Regulatory T Cell Differentiation through Modulation of TGF-β Signaling. J Immunol 197:4344-4350
Malhotra, Deepali; Linehan, Jonathan L; Dileepan, Thamotharampillai et al. (2016) Tolerance is established in polyclonal CD4(+) T cells by distinct mechanisms, according to self-peptide expression patterns. Nat Immunol 17:187-95
Publicover, Jean; Jespersen, Jillian M; Johnson, Audra J et al. (2016) Liver capsule: Age-influenced hepatic immune priming determines HBV infection fate: Implications from mouse to man. Hepatology 63:260
DuPage, Michel; Bluestone, Jeffrey A (2016) Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat Rev Immunol 16:149-63
Jones, Laura M; Broz, Miranda L; Ranger, Jill J et al. (2016) STAT3 Establishes an Immunosuppressive Microenvironment during the Early Stages of Breast Carcinogenesis to Promote Tumor Growth and Metastasis. Cancer Res 76:1416-28
Hendricks, Deborah W; Min-Oo, Gundula; Lanier, Lewis L (2016) Sweet Is the Memory of Past Troubles: NK Cells Remember. Curr Top Microbiol Immunol 395:147-71
Mujal, Adriana M; Gilden, Julia K; Gérard, Audrey et al. (2016) A septin requirement differentiates autonomous and contact-facilitated T cell proliferation. Nat Immunol 17:315-22
Proekt, Irina; Miller, Corey N; Jeanne, Marion et al. (2016) LYN- and AIRE-mediated tolerance checkpoint defects synergize to trigger organ-specific autoimmunity. J Clin Invest 126:3758-3771
Ramstein, Joris; Broos, Caroline E; Simpson, Laura J et al. (2016) IFN-γ-Producing T-Helper 17.1 Cells Are Increased in Sarcoidosis and Are More Prevalent than T-Helper Type 1 Cells. Am J Respir Crit Care Med 193:1281-91
Vujkovic-Cvijin, Ivan; Swainson, Louise A; Chu, Simon N et al. (2015) Gut-Resident Lactobacillus Abundance Associates with IDO1 Inhibition and Th17 Dynamics in SIV-Infected Macaques. Cell Rep 13:1589-97

Showing the most recent 10 out of 119 publications