""""""""Parasitism"""""""" refers to a close relationship between two dissimilar organisms in which one organism (the parasite) benefits at the expense of the host. Parasitology often refers to protozoa and helminthic infections, but all pathogenic microbes face the same pressures to evade immune killing and derive nutrients in order survive in their mammalian hosts. This application is based on the hypothesis that the mechanisms through which pathogenic microbes invade and elicit disease in mammalian hosts, and responses of the host to these microbial pathogens, will share common features among microbes from different phyla, i.e., protozoa, helminths, bacteria, and viruses. A corollary is that the same technology can be applied to investigations of microbial virulence/host responses to different pathogens. Advances in microbial and host proteomics, metabolomics, deep-sequencing, regulatory RNAs and imaging have dramatically changed our capacity to approach critical questions underlying the host-parasite relationship. This Mechanisms of Parasitism training program embodies an integrated approach to the study of parasitism among researchers studying different pathogenic microbes but sharing interests in the survival mechanisms of the microbe and the defense strategies of the host. During the 14 years since its initial funding, the Mechanisms of Parasitism program has supported a total of 63 trainees (34 predocs and 29 postdocs). Virtually all of these trainees remain in science today, many early ones of whom are now in tenured academic positions. Key features of our program have been a weekly Parasitism Journal Club/Research meeting, annual formal presentations of the entire program, sponsored outside speakers, and mechanisms to promote the use of new technology and equipment by our trainees. Our ratios of applicants to selected trainees are high (13:1 predoc and 11:1 postdoc) and we expect postdoc applications to increase even further. In this application we request to (1) increase from 3 to 4 postdoctoral positions;(2) continue supporting 4 predoctoral trainees per year;(3) expand our weekly research meetings to include """"""""Technical Topics"""""""" intended to provide trainees with the background and functional use of the latest techniques in bioinformatics, proteomics, statistics and statistical genetics, and microscopy;(4) expand our involvement of trainees in inviting and hosting outside speakers, and (5) focus on career development needs unique to the current research climate. Our program has been highly productive over the past 14 years. Our goal is to creatively and continually improve the environment and opportunities for trainees working on different aspects of the host-microbe balance during microbial infection.

Public Health Relevance

Parasites, bacteria and viruses causing human disease have carefully designed strategies to avoid immune responses, survive and cause disease. An understanding of this parasitic relationship is essential before we can design and implement strategies to control these infections. The Mechanisms of Parasitism training program is designed to provide a supportive and nurturing environment for graduate students and postdoctoral fellows to apply unified approaches to study the varied infectious scourges affecting humankind.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Institutional National Research Service Award (T32)
Project #
5T32AI007511-19
Application #
8663819
Study Section
Microbiology and Infectious Diseases Research Committee (MID)
Program Officer
Robbins, Christiane M
Project Start
1996-08-01
Project End
2016-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
19
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Iowa
Department
Biochemistry
Type
Schools of Medicine
DUNS #
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Grunewald, Matthew E; Fehr, Anthony R; Athmer, Jeremiah et al. (2018) The coronavirus nucleocapsid protein is ADP-ribosylated. Virology 517:62-68
Kinkead, Lauren C; Whitmore, Laura C; McCracken, Jenna M et al. (2018) Bacterial lipoproteins and other factors released by Francisella tularensis modulate human neutrophil lifespan: Effects of a TLR1 SNP on apoptosis inhibition. Cell Microbiol 20:
Van Braeckel-Budimir, Natalija; Varga, Steven M; Badovinac, Vladimir P et al. (2018) Repeated Antigen Exposure Extends the Durability of Influenza-Specific Lung-Resident Memory CD8+ T Cells and Heterosubtypic Immunity. Cell Rep 24:3374-3382.e3
Janssen, Kayley H; Diaz, Manisha R; Gode, Cindy J et al. (2018) RsmV, a Small Noncoding Regulatory RNA in Pseudomonas aeruginosa That Sequesters RsmA and RsmF from Target mRNAs. J Bacteriol 200:
Janssen, Kayley H; Diaz, Manisha R; Golden, Matthew et al. (2018) Functional Analyses of the RsmY and RsmZ Small Noncoding Regulatory RNAs in Pseudomonas aeruginosa. J Bacteriol 200:
Scorza, Breanna M; Wacker, Mark A; Messingham, Kelly et al. (2017) Differential Activation of Human Keratinocytes by Leishmania Species Causing Localized or Disseminated Disease. J Invest Dermatol 137:2149-2156
Kinkead, Lauren C; Fayram, Drew C; Allen, Lee-Ann H (2017) Francisella novicida inhibits spontaneous apoptosis and extends human neutrophil lifespan. J Leukoc Biol 102:815-828
Kelly, Patrick H; Bahr, Sarah M; Serafim, Tiago D et al. (2017) The Gut Microbiome of the Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum. MBio 8:
Schulmeyer, Kayley H; Yahr, Timothy L (2017) Post-transcriptional regulation of type III secretion in plant and animal pathogens. Curr Opin Microbiol 36:30-36
Paharik, Alexandra E; Parlet, Corey P; Chung, Nadjali et al. (2017) Coagulase-Negative Staphylococcal Strain Prevents Staphylococcus aureus Colonization and Skin Infection by Blocking Quorum Sensing. Cell Host Microbe 22:746-756.e5

Showing the most recent 10 out of 135 publications