The Molecular and Cell Biology of Infectious Diseases Training Program at Stony Brook University provides predoctoral students with enhanced research training and career development activities. The goal of the Program is to increase the number of students that obtain a highly productive PhD thesis and a successful career in infectious disease research. Trainees are selected from three participating graduate programs: Molecular Genetics and Microbiology, Genetics, or Molecular and Cell Biology. Required courses in Genetics, Biochemistry, Molecular Biology, Cell Biology, Immunology, Microbial Pathogenesis and Responsible Conduct of Research provide the required foundation of scientific knowledge. Students who show the most promise, based on undergraduate academic performance and achievements in graduate courses, laboratory rotations, and qualifying exams are admitted to the Program, typically in the third year of graduate school for a 2- to 3- year period. Trainees specifically benefit from participation in the Program-sponsored seminar series, travel funds to attend scientific and career development conferences, and funds for performing cutting-edge and multidisciplinary research. Nineteen Full, Associate or Assistant Professors from four different academic departments serve as Mentors. The Mentors are well funded, have exemplary training records, and share a common interest in teaching and researching the pathogenesis of infectious diseases at the molecular and cellular levels. The areas of research training available to students include: a) bacterial pathogenesis;b) fungal virulence mechanisms;c) viral pathogenesis and replication;d) regulation of pathogen gene expression;e) control of viral packaging and capsid assembly;f) development of diagnostics, drugs and vaccines against pathogens, and g) innate and adaptive immune responses to pathogens. The Program is overseen by a Director, Associate Director, Advisory Committee and Executive Committee and has a strong record of collaboration among Mentors and Trainees. A comprehensive plan for recruitment of a diverse cohort of training grant-eligible students is in place and is highly successful. The Program includes a robust mechanism for evaluating and improving all aspects of the training environment and for tracking the success of previous Trainees for a period of up to 10 years. All 22 Trainees supported over the 15 year life of the Program have completed the training and obtained PhDs or remain in training, demonstrating a strong record of retention. A 5-year award is requested, with support for 5 Trainees in years 1-2, and 6 in years 3-5.

Public Health Relevance

Infectious diseases remain a significant health problem in this country and worldwide. The goal of the Molecular and Cell Biology of Infectious Diseases Training Program is to provide predoctoral trainees with enhanced training in infectious disease research and career development. The Training Program will thus give each beginning scientist the necessary tools for a highly productive PhD thesis and a successful career in infectious disease research.

National Institute of Health (NIH)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Microbiology and Infectious Diseases Research Committee (MID)
Program Officer
Robbins, Christiane M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
State University New York Stony Brook
Schools of Medicine
Stony Brook
United States
Zip Code
Cieniewicz, Brandon; Carpino, Nicholas; Krug, Laurie T (2014) Enhanced response of T cells from murine gammaherpesvirus 68-infected mice lacking the suppressor of T cell receptor signaling molecules Sts-1 and Sts-2. PLoS One 9:e90196
Bublitz, DeAnna C; Wright, Patricia C; Bodager, Jonathan R et al. (2014) Epidemiology of pathogenic enterobacteria in humans, livestock, and peridomestic rodents in rural Madagascar. PLoS One 9:e101456
Khan, Shaukat; Toyoda, Hidemi; Linehan, Melissa et al. (2014) Poliomyelitis in transgenic mice expressing CD155 under the control of the Tage4 promoter after oral and parenteral poliovirus inoculation. J Gen Virol 95:1668-76
DelGiorno, Kathleen E; Tam, Jason W; Hall, Jason C et al. (2014) Persistent salmonellosis causes pancreatitis in a murine model of infection. PLoS One 9:e92807
Guimet, Diana; Hearing, Patrick (2013) The adenovirus L4-22K protein has distinct functions in the posttranscriptional regulation of gene expression and encapsidation of the viral genome. J Virol 87:7688-99
Thomas-Charles, Cindy A; Zheng, Huaixin; Palmer, Lance E et al. (2013) FeoB-mediated uptake of iron by Francisella tularensis. Infect Immun 81:2828-37
Wu, Kai; Guimet, Diana; Hearing, Patrick (2013) The adenovirus L4-33K protein regulates both late gene expression patterns and viral DNA packaging. J Virol 87:6739-47
Rasmussen, John W; Tam, Jason W; Okan, Nihal A et al. (2012) Phenotypic, morphological, and functional heterogeneity of splenic immature myeloid cells in the host response to tularemia. Infect Immun 80:2371-81
Karen, Kasey A; Hearing, Patrick (2011) Adenovirus core protein VII protects the viral genome from a DNA damage response at early times after infection. J Virol 85:4135-42
Nelson, Lindsay D; Chiantia, Salvatore; London, Erwin (2010) Perfringolysin O association with ordered lipid domains: implications for transmembrane protein raft affinity. Biophys J 99:3255-63

Showing the most recent 10 out of 17 publications