Infectious diseases remains the leading cause of death worldwide, and the necessity to markedly increase training in infectious diseases has been highlighted by the emergence of new pathogens and the threat of bioterrorism. The complexity and diversity of persistence and pathogenesis mechanisms utilized by microorganisms pose major challenges to the development of effective vaccines to prevent infection and chemical or immune-based treatments of infectious diseases. Research into microbial persistence and pathogenesis requires, in addition to broad training in microbiology, expertise in molecular genetics, biochemistry, immunology, and cell and molecular biology. Thus, there continues to be an urgent need to train a new generation of independent investigators with the interdisciplinary experience and expertise to address these complex issues of persistence and pathogenesis. A goal of the training program has been, and will continue to be, the recruitment of undergraduates and recent Ph.D. graduates in related disciplines (biochemistry, biological sciences, cellular and molecular biology, etc) into advanced studies in mechanisms of microbial persistence and pathogenesis. The training program brings together faculty throughout the University of Pittsburgh, including the School of Medicine, Graduate School of Public Health, and the Faculty of Arts and Sciences. The Molecular Microbial Persistence and Pathogenesis (MMPP) training program offers a unique opportunity for the coordinated interdisciplinary research training of predoctoral trainees within the structur of the Molecular Virology and Microbiology (MVM) Graduate Program and postdoctoral trainees within the laboratories of MMPP faculty, with additional training via specialized course offerings, dedicated research seminars, retreats, and participation in national scientific meetings. Importantly, the MMPP program is unique in that it leverages concepts in persistence and pathogenesis from diverse viral and bacterial systems with the goal of educating trainees of the diversity of microbial mechanisms, but also enabling the utilization of common themes for their research. Support for 4 predoctoral and 2 postdoctoral trainees per year is requested. Predoctoral trainees can be appointed for up to two years. Postdoctoral trainees are appointed for 1 year with the opportunity to competitively renew their appointments for an additional year. The MMPP program remains committed to the need to increase diversity in trainees, to provide training in the responsible conduct of research, and to provide career guidance for trainees.

Public Health Relevance

Infectious diseases remains the leading cause of death worldwide, and the necessity to markedly increase training in infectious diseases has been highlighted by the emergence of new pathogens and the threat of bioterrorism. The complexity and diversity of persistence and pathogenesis mechanisms utilized by microorganisms pose major challenges to the development of effective vaccines to prevent infection and chemical or immune-based treatments of infectious diseases. A goal of the training program is the recruitment of undergraduates and recent Ph.D. graduates in related disciplines (biochemistry, biological sciences, cellular and molecular biology, etc) into advanced studies in mechanisms of microbial persistence and pathogenesis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Institutional National Research Service Award (T32)
Project #
2T32AI049820-11A1
Application #
8744390
Study Section
Microbiology and Infectious Diseases Research Committee (MID)
Program Officer
Robbins, Christiane M
Project Start
2001-07-01
Project End
2019-06-30
Budget Start
2014-07-15
Budget End
2015-06-30
Support Year
11
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Kwun, H J; Wendzicki, J A; Shuda, Y et al. (2017) Merkel cell polyomavirus small T antigen induces genome instability by E3 ubiquitin ligase targeting. Oncogene 36:6784-6792
Corry, Jacqueline; Arora, Nitin; Good, Charles A et al. (2017) Organotypic models of type III interferon-mediated protection from Zika virus infections at the maternal-fetal interface. Proc Natl Acad Sci U S A 114:9433-9438
Fox, Hannah L; Dembowski, Jill A; DeLuca, Neal A (2017) A Herpesviral Immediate Early Protein Promotes Transcription Elongation of Viral Transcripts. MBio 8:
Melvin, Jeffrey A; Gaston, Jordan R; Phillips, Shawn N et al. (2017) Pseudomonas aeruginosa Contact-Dependent Growth Inhibition Plays Dual Role in Host-Pathogen Interactions. mSphere 2:
Morris, Alison; Paulson, Joseph N; Talukder, Hisham et al. (2016) Longitudinal analysis of the lung microbiota of cynomolgous macaques during long-term SHIV infection. Microbiome 4:38
Melvin, Jeffrey A; Lashua, Lauren P; Kiedrowski, Megan R et al. (2016) Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection. mSphere 1:
Bina, X Renee; Howard, Mondraya F; Ante, Vanessa M et al. (2016) Vibrio cholerae LeuO Links the ToxR Regulon to Expression of Lipid A Remodeling Genes. Infect Immun 84:3161-3171
McCormick, Kevin D; Ghosh, Arundhati; Trivedi, Sumita et al. (2016) Innate immune signaling through differential RIPK1 expression promote tumor progression in head and neck squamous cell carcinoma. Carcinogenesis 37:522-9
Bayer, Avraham; Lennemann, Nicholas J; Ouyang, Yingshi et al. (2016) Type III Interferons Produced by Human Placental Trophoblasts Confer Protection against Zika Virus Infection. Cell Host Microbe 19:705-12
Melvin, Jeffrey A; Montelaro, Ronald C; Bomberger, Jennifer M (2016) Clinical potential of engineered cationic antimicrobial peptides against drug resistant biofilms. Expert Rev Anti Infect Ther 14:989-991

Showing the most recent 10 out of 75 publications