The goal of the Yale Virology Training Program is to equip predoctoral trainees with the intellectual and research foundations necessary to become independent scientists/educators investigating the molecular biology of viruses, host responses to them, and their roles in human disease. The Virology Training Program combines rigorous research training in a highly collaborative, interactive environment with a thorough academic program of instruction in modern virology, general microbiology, immunology and related disciplines. The program offers training in virtually all aspects of viral genetics, the molecular, cellular and structural biology of viruses, as well as virus-host interactions at the cellular and organismal levels. Areas of particular strength include the structural biology of viral components, viral transformation, viral entry, trafficking and replication, and the adaptive and innate immune response to viruses, including a number of select agent pathogens of biodefense interest. As a group, the 26 Virology Program trainers have an outstanding record of research accomplishment and training and many are national or international leaders in their fields. These faculty have primary appointments in 12 different Yale departments and currently have 72 predoctoral and 120 postdoctoral trainees working in their labs. Predoctoral training leading to the Ph.D. degree involves formal course work in microbiology and/or immunology, as well as other areas of biology, research rotations, teaching, and the qualifying exam in the first two years, with dissertation research beginning late in year one and becoming the primary focus of activity after completion of the qualifying exam. Intensive training in the methods, logic, and responsible conduct of research are supplemented with a wide array of opportunities for scientific interactions. The average time to obtain the Ph.D. degree is 5.5 - 6.0 years. Extensive efforts are made by Virology trainers and Yale Graduate and Medical Schools to attract and retain trainees from diverse backgrounds, particularly under-represented minority groups. This application requests funding to support six predoctoral trainees at any one time;they are supported by this grant for a maximum of three years. Relevance: This program trains young scientists to pursue research careers focused on investigating the biology of viruses, which still plague the human population as agents of infectious diseases. Such research is expected to yield new approaches to detect and combat pathogenic viruses, and new therapies that exploit the virus life cycle for positive health benefits, such as new vaccine and gene therapy vectors, and oncolytic agents.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Institutional National Research Service Award (T32)
Project #
5T32AI055403-10
Application #
8298592
Study Section
Microbiology and Infectious Diseases B Subcommittee (MID)
Program Officer
Mcsweegan, Edward
Project Start
2003-08-01
Project End
2014-07-31
Budget Start
2012-08-01
Budget End
2014-07-31
Support Year
10
Fiscal Year
2012
Total Cost
$169,812
Indirect Cost
$8,714
Name
Yale University
Department
Pathology
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Pillai, Padmini S; Molony, Ryan D; Martinod, Kimberly et al. (2016) Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science 352:463-6
Khoury-Hanold, William; Yordy, Brian; Kong, Philip et al. (2016) Viral Spread to Enteric Neurons Links Genital HSV-1 Infection to Toxic Megacolon and Lethality. Cell Host Microbe 19:788-99
Reynolds, Tracy D; Buonocore, Linda; Rose, Nina F et al. (2015) Virus-Like Vesicle-Based Therapeutic Vaccine Vectors for Chronic Hepatitis B Virus Infection. J Virol 89:10407-15
Liu, Shan; Jackson, Andrew; Beloor, Jagadish et al. (2015) Adenovirus-Vectored Broadly Neutralizing Antibodies Directed Against gp120 Prevent Human Immunodeficiency Virus Type 1 Acquisition in Humanized Mice. Hum Gene Ther 26:622-34
West, A Phillip; Khoury-Hanold, William; Staron, Matthew et al. (2015) Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520:553-7
Zeller, Skye; Choi, Chang Seon; Uchil, Pradeep D et al. (2015) Attachment of cell-binding ligands to arginine-rich cell-penetrating peptides enables cytosolic translocation of complexed siRNA. Chem Biol 22:50-62
Ding, Siyuan; Khoury-Hanold, William; Iwasaki, Akiko et al. (2014) Epigenetic reprogramming of the type III interferon response potentiates antiviral activity and suppresses tumor growth. PLoS Biol 12:e1001758
Cohen, Emily B; Jun, Susan J; Bears, Zachary et al. (2014) Mapping the homodimer interface of an optimized, artificial, transmembrane protein activator of the human erythropoietin receptor. PLoS One 9:e95593
Guayasamin, Ryann C; Reynolds, Tracy D; Wei, Xin et al. (2014) Type III interferon attenuates a vesicular stomatitis virus-based vaccine vector. J Virol 88:10909-17
Yordy, Brian; Tal, Michal Caspi; Hayashi, Kachiko et al. (2013) Autophagy and selective deployment of Atg proteins in antiviral defense. Int Immunol 25:1-10

Showing the most recent 10 out of 22 publications