The emergence of Severe Acute Respiratory Syndrome (SARS), potential for a highly pathogenic influenza pandemic, and sobering reality of the 2001 anthrax attacks emphasize the danger to human health posed by infectious organisms, both natural and man-made. An effective response to infectious threats requires individuals well versed in infectious disease biology and control, as well as biodefense preparedness. Such preparedness was demonstrated by Wadsworth Center's anthrax testing initiative in 2001, as well as its subsequent SARS and influenza programs. A training program for predoctoral and postdoctoral fellows in the laboratory sciences, with an epidemiology enrichment, is proposed to meet this need for scientists with expertise in emerging infections and biodefense sciences. The goal of this program is to provide multi-disciplinary training combining basic and applied research to produce: (1) doctoral graduates with backgrounds in emerging infectious diseases and biodefense;and (2) postdoctoral fellows who can become independent scientists developing integrated research programs in emerging infections and biodefense. Ten well-funded mentors and five associate mentors are drawn from the Wadsworth Center and the Office of Science of the New York State Department of Health, through their academic appointments within the School of Public Health, University at Albany, SUNY. This unique training environment combines fundamental research with infectious disease outbreak and biodefense response. The training program's key components are based on the existing curriculum of the Departments of Biomedical Sciences and Epidemiology. Didactic components include grounding in biochemistry, cell biology, microbiology, virology, molecular genetics, microbial pathogenesis, immunology, and infectious disease epidemiology with a focus on the biological basis of public health and disease transmission. A set of courses on Emerging Infections and Biodefense Sciences introduces biosafety procedures, BSL3 pathogen containment, pathogen detection, and bioterrorism event and response modeling. Fellows participate in clinically relevant laboratory rotations and colloquia, and journal clubs covering advanced topics and the current literature. An emerging infections research seminar series builds on existing Wadsworth Center and Department of Health seminar programs. The steering and advisory committees, and the existing University at Albany, School of Public Health academic structures, ensure that high-quality applicants enter this specialized program and that both pre- and postdoctoral students become productive scientists in this research area.

Public Health Relevance

The emergence of Severe Acute Respiratory Syndrome (SARS), potential for a highly pathogenic influenza pandemic, and sobering reality of the 2001 anthrax attacks emphasize the danger to human health posed by infectious organisms, both natural and man-made. This application proposes to train pre- and postdoctoral scientists to combat such threats to the nation's public health.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Microbiology and Infectious Diseases B Subcommittee (MID)
Program Officer
Robbins, Christiane M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wadsworth Center
United States
Zip Code
Yermakova, Anastasiya; Klokk, Tove Irene; O'Hara, Joanne M et al. (2016) Neutralizing Monoclonal Antibodies against Disparate Epitopes on Ricin Toxin's Enzymatic Subunit Interfere with Intracellular Toxin Transport. Sci Rep 6:22721
Wahome, Newton; Sully, Erin; Singer, Christopher et al. (2016) Novel Ricin Subunit Antigens With Enhanced Capacity to Elicit Toxin-Neutralizing Antibody Responses in Mice. J Pharm Sci 105:1603-13
Van Slyke, Greta; Sully, Erin K; Bohorova, Natasha et al. (2016) Humanized Monoclonal Antibody That Passively Protects Mice against Systemic and Intranasal Ricin Toxin Challenge. Clin Vaccine Immunol 23:795-9
Kramer, Laura D; Ciota, Alexander T (2015) Dissecting vectorial capacity for mosquito-borne viruses. Curr Opin Virol 15:112-8
Topilina, Natalya I; Green, Cathleen M; Jayachandran, Pradeepa et al. (2015) SufB intein of Mycobacterium tuberculosis as a sensor for oxidative and nitrosative stresses. Proc Natl Acad Sci U S A 112:10348-53
Levinson, Kara J; Giffen, Samantha R; Pauly, Michael H et al. (2015) Plant-based production of two chimeric monoclonal IgG antibodies directed against immunodominant epitopes of Vibrio cholerae lipopolysaccharide. J Immunol Methods 422:111-7
Brecher, Matthew; Chen, Hui; Liu, Binbin et al. (2015) Novel Broad Spectrum Inhibitors Targeting the Flavivirus Methyltransferase. PLoS One 10:e0130062
Levinson, Kara J; De Jesus, Magdia; Mantis, Nicholas J (2015) Rapid effects of a protective O-polysaccharide-specific monoclonal IgA on Vibrio cholerae agglutination, motility, and surface morphology. Infect Immun 83:1674-83
Sully, Erin K; Whaley, Kevin; Bohorova, Natasha et al. (2014) A tripartite cocktail of chimeric monoclonal antibodies passively protects mice against ricin, staphylococcal enterotoxin B and Clostridium perfringens epsilon toxin. Toxicon 92:36-41
Fitzgerald, Devon M; Bonocora, Richard P; Wade, Joseph T (2014) Comprehensive mapping of the Escherichia coli flagellar regulatory network. PLoS Genet 10:e1004649

Showing the most recent 10 out of 33 publications