This is an application for continuation of the Biodefense Training Program, which prepares doctoral students for careers in a variety of research disciplines critical to protecting the US and other parts of the world from bioweapons and naturally emerging, highly pathogenic bacteria and viruses. With the current and recent construction of many new BSL3 and BSL4 laboratories on academic campuses and at government facilities, there is an acute need for more scientists to work safely at high containment in biodefense research. UTMB is particularly well qualified to train these scientists by virtue of its unique, state-of-the-art, high containment facilities, major biodefense research programs, highly developed biocontainment training program, and outstanding faculty who study most of the major potential bioweapons. The research topics within the UTMB biodefense and emerging infectious disease portfolio are also unusually strong and diverse, ranging from vaccine development to diagnostics to antimicrobial development to pathogenesis, and the programs are highly collaborative, translational and interdisciplinary in nature. The Biodefense Training program includes PhD or MD/PhD students who are enrolled in four graduate programs: Experimental Pathology, Microbiology &Immunology, Biochemistry &Molecular Biology and Human Pathophysiology &Translational Medicine;four students are supported each year. Trainees are selected by an Executive Committee after completion of the qualifying exam and a formal application, and are supported for 1-2 years during their dissertation research. In addition to courses required by their respective programs, program trainees also enroll in elective classes specific to biodefense. Sixteen senior, well-funded faculty mentors participate in the program as preceptors, and enrichment activities include special seminar invitations, a Biodefense and Emerging Infectious Diseases Journal Club, and specialized courses to enhance the educational experience of the trainees as well as the cohesiveness of the program. Several program faculty with unique biodefense training opportunities but with limited mentoring experience are paired with senior co-mentors that will benefit both the student and the faculty member being mentored as a preceptor. A strong, multi-component program for recruiting underrepresented minority trainees will be further augmented to help develop a biodefense workforce that mirrors the national population.

Public Health Relevance

Many microbes under study at UTMB are potential biological weapons as well naturally emerging pathogens. To protect the US from acts of biological warfare or terrorism, as well as from disease emergence, improved diagnostics, treatments and vaccines are needed. This program that capitalizes on UTMB's unique high containment facilities and biosafety educational programs will train doctoral students to become productive, independent, researchers who will form the next generation of biodefense scientists.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Microbiology and Infectious Diseases Research Committee (MID)
Program Officer
Robbins, Christiane M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Medical Br Galveston
Schools of Medicine
United States
Zip Code
Nusbaum, Rebecca J; Calderon, Veronica E; Huante, Matthew B et al. (2016) Pulmonary Tuberculosis in Humanized Mice Infected with HIV-1. Sci Rep 6:21522
Sha, Jian; Kirtley, Michelle L; Klages, Curtis et al. (2016) A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates. Clin Vaccine Immunol 23:586-600
Koma, Takaaki; Patterson, Michael; Huang, Cheng et al. (2016) Machupo Virus Expressing GPC of the Candid#1 Vaccine Strain of Junin Virus Is Highly Attenuated and Immunogenic. J Virol 90:1290-7
Fitts, Eric C; Andersson, Jourdan A; Kirtley, Michelle L et al. (2016) New Insights into Autoinducer-2 Signaling as a Virulence Regulator in a Mouse Model of Pneumonic Plague. mSphere 1:
Bechelli, Jeremy; Smalley, Claire; Zhao, Xuemei et al. (2016) MyD88 Mediates Instructive Signaling in Dendritic Cells and Protective Inflammatory Response during Rickettsial Infection. Infect Immun 84:883-93
Agrawal, Anurodh Shankar; Ying, Tianlei; Tao, Xinrong et al. (2016) Passive Transfer of A Germline-like Neutralizing Human Monoclonal Antibody Protects Transgenic Mice Against Lethal Middle East Respiratory Syndrome Coronavirus Infection. Sci Rep 6:31629
Plante, Jessica A; Torres, Maricela; Huang, Claire Y-H et al. (2016) Plasticity of a critical antigenic determinant in the West Nile virus NY99 envelope protein domain III. Virology 496:97-105
Ponnusamy, Duraisamy; Kozlova, Elena V; Sha, Jian et al. (2016) Cross-talk among flesh-eating Aeromonas hydrophila strains in mixed infection leading to necrotizing fasciitis. Proc Natl Acad Sci U S A 113:722-7
Andersson, Jourdan A; Fitts, Eric C; Kirtley, Michelle L et al. (2016) New Role for FDA-Approved Drugs in Combating Antibiotic-Resistant Bacteria. Antimicrob Agents Chemother 60:3717-29
Ponnusamy, Duraisamy; Fitts, Eric C; Sha, Jian et al. (2015) High-throughput, signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection. Infect Immun 83:2065-81

Showing the most recent 10 out of 73 publications