This application is a competitive renewal request for continuing support of four pre-doctoral trainees per year engaged in research using animal models of infectious diseases (AMID), which will be matched by two positions funded by UC Davis institutional support. The AMID Training Program, first funded in 2004, takes advantage of the extraordinary resources at UC Davis for research on animal models of infectious diseases, including the co-localization of the Graduate School, the Schools of Medicine and Veterinary Medicine, the California National Primate Research Center, the Mouse Biology Program, and the Center for Comparative Medicine, a unique training environment that arguably exists nowhere else in the world. During the first funding period, through this NIH grant and UC Davis matching support, we supported 23 students working under the supervision of 18 different faculty trainers. The success of the AMID Program is highlighted by the quality of the students and their accomplishments, the impact on collaborative research and student mentorship, research seminars, collaborative grants by participating faculty, and by our careful attention to teaching responsible conduct of research and promoting student diversity. The AMID Training Program has grown substantially since its inception, most notably by increases in faculty size, diversity, collaboration, and grant support;by increases in the size and quality of the student candidate pool;and by the addition of new courses and seminar series. The AMID Training Program will continue to be administered by Jay Solnick, MD, PhD (Director), with the assistance of Charles Bevins, MD, PhD (Associate Director), and an Executive Committee experienced in graduate education. The faculty trainers for the program will be 23 investigators at UC Davis, whose work uses animal models to better understand a broad range of viral, bacterial, and eukaryotic human pathogens. Students will be drawn from a pool of over 100 students in the graduate groups of Microbiology and Immunology, and an even larger number in related graduate groups. They will be matched with relevant faculty trainers and their progress will be closely monitored by the Program Director, Associate Director, and an Advisory Committee experienced in graduate education. Training will emphasize rigorous scientific research, oral and written scientific communication, and interaction with a broad range of scientists interested in animal models of human infectious diseases.

Public Health Relevance

Research conducted by these trainees will have broad impact on the understanding, management, and prevention of infectious disease, which is one of the most important aspects of human health.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Institutional National Research Service Award (T32)
Project #
5T32AI060555-09
Application #
8448207
Study Section
Microbiology and Infectious Diseases B Subcommittee (MID)
Program Officer
Robbins, Christiane M
Project Start
2004-09-01
Project End
2015-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
9
Fiscal Year
2013
Total Cost
$147,224
Indirect Cost
$8,714
Name
University of California Davis
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Deere, Jesse D; Kauffman, Robert C; Cannavo, Elda et al. (2014) Analysis of multiply spliced transcripts in lymphoid tissue reservoirs of rhesus macaques infected with RT-SHIV during HAART. PLoS One 9:e87914
Hastey, Christine J; Ochoa, Jennine; Olsen, Kimberley J et al. (2014) MyD88- and TRIF-independent induction of type I interferon drives naive B cell accumulation but not loss of lymph node architecture in Lyme disease. Infect Immun 82:1548-58
Kim, Min-Ho; Gorouhi, Farzam; Ramirez, Sandra et al. (2014) Catecholamine stress alters neutrophil trafficking and impairs wound healing by ?2-adrenergic receptor-mediated upregulation of IL-6. J Invest Dermatol 134:809-17
O'Donnell, Hope; Pham, Oanh H; Li, Lin-xi et al. (2014) Toll-like receptor and inflammasome signals converge to amplify the innate bactericidal capacity of T helper 1 cells. Immunity 40:213-24
Lokken, Kristen L; Mooney, Jason P; Butler, Brian P et al. (2014) Malaria parasite infection compromises control of concurrent systemic non-typhoidal Salmonella infection via IL-10-mediated alteration of myeloid cell function. PLoS Pathog 10:e1004049
Ozcan, Sureyya; Barkauskas, Donald A; Renee Ruhaak, L et al. (2014) Serum glycan signatures of gastric cancer. Cancer Prev Res (Phila) 7:226-35
Nuccio, Sean-Paul; Bäumler, Andreas J (2014) Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut. MBio 5:e00929-14
McDonnel, S J; Tell, L A; Murphy, B G (2014) Pharmacokinetics and pharmacodynamics of suberoylanilide hydroxamic acid in cats. J Vet Pharmacol Ther 37:196-200
Wadford, Debra A; Kauffman, Robert C; Deere, Jesse D et al. (2014) Variation of human immunodeficiency virus type-1 reverse transcriptase within the simian immunodeficiency virus genome of RT-SHIV. PLoS One 9:e86997
Murphy, B; Hillman, C; McDonnel, S (2014) Peripheral immunophenotype and viral promoter variants during the asymptomatic phase of feline immunodeficiency virus infection. Virus Res 179:34-43

Showing the most recent 10 out of 44 publications