The NIH-sponsored Training Program in Investigative Rheumatology, begun at Yale in 1976, has the philosophy that a portion of biomedical scientists, both MDs and PhDs, should be trained in an environment that focuses upon mechanisms of rheumatologic and immunologic diseases. This belief is grounded in the notion that the challenges involved in understanding these illnesses requires a cohort of investigators whose knowledge and training enable them to span the gaps between basic biology and clinical rheumatology and immunology. Hence, the goals of this program are to attract individuals who are interested in learning about fundamental mechanisms of disease and the applications of this knowledge. The program is focused upon basic investigation, with an emphasis on providing training in immunology, microbiology, and cellular and molecular biology as applied to the clinical understanding of rheumatic diseases;is comprised of both physician and Ph.D. trainees;and has for its training faculty a collaborative group of 29 physician and basic scientists from the Section of Rheumatology and other Sections in the Department of Medicine, and basic investigators from the Section (Department) of Immunobiology. The quality, cohesiveness, and diverse skills of these mentors, along with the skills and the desire of our trainees, are the most important requisites for success of our program. Five trainees (M.D. and Ph.D.) per year are currently supported, with that number requested in this renewal. This request is based upon the success of the program and the number of high quality applicants. M.D. trainees typically perform clinical work in the first year of their fellowship (supported by clinical funds), and then enter research training. The combination of both M.D. and Ph.D. fellows gives the M.D. fellows a much better lab experience, and it exposes the Ph.D. fellows to opportunities to apply their skills to rheumatologic problems. Fellows supported by this Training Grant receive didactic as well as interactive instruction in basic biology, laboratory techniques, clinical investigation and ethical issues in science. This program provides trainees with the foundation in basic and clinical science that will enable them to bridge the differences between basic research and fundamental approaches to understanding rheumatic diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32AR007107-36
Application #
7822872
Study Section
Arthritis and Musculoskeletal and Skin Diseases Special Grants Review Committee (AMS)
Program Officer
Mancini, Marie
Project Start
1976-07-01
Project End
2011-08-31
Budget Start
2010-05-01
Budget End
2011-08-31
Support Year
36
Fiscal Year
2010
Total Cost
$302,677
Indirect Cost
Name
Yale University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Hsiao, Betty; Binder-Finnema, Pauline; Benjamin Nowell, W et al. (2018) Preference phenotypes can be used to support shared decision-making at point-of-care for patients with rheumatoid arthritis: A proof of concept study. Arthritis Care Res (Hoboken) :
Wang, Andrew; Huen, Sarah C; Luan, Harding H et al. (2018) Glucose metabolism mediates disease tolerance in cerebral malaria. Proc Natl Acad Sci U S A 115:11042-11047
Hsiao, Betty; Bhalla, Sonal; Mattocks, Kristin et al. (2018) Understanding the Factors That Influence Risk Tolerance Among Minority Women: A Qualitative Study. Arthritis Care Res (Hoboken) 70:1637-1645
Kim, Sang Taek; Choi, Jin-Young; Lainez, Begona et al. (2018) Human Extrafollicular CD4+ Th Cells Help Memory B Cells Produce Igs. J Immunol 201:1359-1372
Herndler-Brandstetter, Dietmar; Shan, Liang; Yao, Yi et al. (2017) Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc Natl Acad Sci U S A 114:E9626-E9634
Hsiao, Betty; Fraenkel, Liana (2017) Incorporating the patient's perspective in outcomes research. Curr Opin Rheumatol 29:144-149
Choi, Jin-Young; Seth, Abhinav; Kashgarian, Michael et al. (2017) Disruption of Pathogenic Cellular Networks by IL-21 Blockade Leads to Disease Amelioration in Murine Lupus. J Immunol 198:2578-2588
Weinstein, Jason S; Herman, Edward I; Lainez, BegoƱa et al. (2016) TFH cells progressively differentiate to regulate the germinal center response. Nat Immunol 17:1197-1205
Hsieh, Evelyn; Fraenkel, Liana; Han, Yang et al. (2016) Longitudinal increase in vitamin D binding protein levels after initiation of tenofovir/lamivudine/efavirenz among individuals with HIV. AIDS 30:1935-42
Wang, Andrew; Huen, Sarah C; Luan, Harding H et al. (2016) Opposing Effects of Fasting Metabolism on Tissue Tolerance in Bacterial and Viral Inflammation. Cell 166:1512-1525.e12

Showing the most recent 10 out of 56 publications