The goal of this program at Washington University is to provide high quality research training in the biomedical investigation of the rheumatic diseases, with a focus on the characterization of basic immunological mechanisms. Now in its 31st year, the program has developed a research training environment conducive to the nurturing of young scientists as evidenced by the large number of researchers and academics who have trained here. The experience will occur under the direction of training faculty in six major areas relevant to the immunobiology of inflammatory diseases including: 1) Animal models of rheumatic diseases;2) Autoimmunity and tolerance;3) Inflammation, the complement system and the innate immune response;4) Antigen processing and MHC molecules 5) Immunoregulation and host defense;and 6) Receptor signaling and lymphocyte development. These predominantly bench investigations in a mentor's laboratory will explore the mechanisms of human and mouse immune and inflammatory responses. A goal of these studies and one that we have fulfilled in the past is to translate these bench based observations into meaningful explanations for the etiology and immunopathologic basis of human disease states. Training Faculty include primarily members of the Rheumatology Division in the Department of Medicine and of the Department of Pathology and Immunology. Both physician-scientist (M.D. and M.D., Ph.D.) and basic scientist (Ph.D.) preceptors form the Program Faculty who are dedicated to training the next generation of scientists dedicated to increasing our understanding of the immunobiology of inflammatory diseases. Trainees will also be required to attend seminars and conferences that are devoted to clinical and translational aspects of rheumatology. This aspect of the training program provides exposure to clinical issues and points out opportunities for new research directions. Thus, this program has a distinguished track record of training physician-scientists and will continue to produce high quality researchers interested in immunologic aspects of the rheumatic diseases.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Arthritis and Musculoskeletal and Skin Diseases Special Grants Review Committee (AMS)
Program Officer
Mancini, Marie
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Internal Medicine/Medicine
Schools of Medicine
Saint Louis
United States
Zip Code
Miner, Jonathan J; Diamond, Michael S (2016) Mechanisms of restriction of viral neuroinvasion at the blood-brain barrier. Curr Opin Immunol 38:18-23
Elvington, Michelle; Liszewski, M Kathryn; Atkinson, John P (2016) Evolution of the complement system: from defense of the single cell to guardian of the intravascular space. Immunol Rev 274:9-15
Speer, Scott D; Li, Zhi; Buta, Sofija et al. (2016) ISG15 deficiency and increased viral resistance in humans but not mice. Nat Commun 7:11496
Keppel, Molly P; Saucier, Nermina; Mah, Annelise Y et al. (2015) Activation-specific metabolic requirements for NK Cell IFN-γ production. J Immunol 194:1954-62
Morales, David J; Monte, Kristen; Sun, Lulu et al. (2015) Novel mode of ISG15-mediated protection against influenza A virus and Sendai virus in mice. J Virol 89:337-49
Miner, Jonathan J; Aw Yeang, Han Xian; Fox, Julie M et al. (2015) Chikungunya viral arthritis in the United States: a mimic of seronegative rheumatoid arthritis. Arthritis Rheumatol 67:1214-20
Milner, Joshua D; Vogel, Tiphanie P; Forbes, Lisa et al. (2015) Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood 125:591-9
Vogel, Tiphanie P; Milner, Joshua D; Cooper, Megan A (2015) The Ying and Yang of STAT3 in Human Disease. J Clin Immunol 35:615-23
Miner, Jonathan J; Daniels, Brian P; Shrestha, Bimmi et al. (2015) The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood-brain barrier integrity. Nat Med 21:1464-72
Ketscher, Lars; Hannß, Ronny; Morales, David J et al. (2015) Selective inactivation of USP18 isopeptidase activity in vivo enhances ISG15 conjugation and viral resistance. Proc Natl Acad Sci U S A 112:1577-82

Showing the most recent 10 out of 54 publications