The goal of this program at Washington University is to provide high quality research training in the biomedical investigation of the rheumatic diseases, with a focus on the characterization of basic immunological mechanisms. Now in its 31st year, the program has developed a research training environment conducive to the nurturing of young scientists as evidenced by the large number of researchers and academics who have trained here. The experience will occur under the direction of training faculty in six major areas relevant to the immunobiology of inflammatory diseases including: 1) Animal models of rheumatic diseases;2) Autoimmunity and tolerance;3) Inflammation, the complement system and the innate immune response;4) Antigen processing and MHC molecules 5) Immunoregulation and host defense;and 6) Receptor signaling and lymphocyte development. These predominantly bench investigations in a mentor's laboratory will explore the mechanisms of human and mouse immune and inflammatory responses. A goal of these studies and one that we have fulfilled in the past is to translate these bench based observations into meaningful explanations for the etiology and immunopathologic basis of human disease states. Training Faculty include primarily members of the Rheumatology Division in the Department of Medicine and of the Department of Pathology and Immunology. Both physician-scientist (M.D. and M.D., Ph.D.) and basic scientist (Ph.D.) preceptors form the Program Faculty who are dedicated to training the next generation of scientists dedicated to increasing our understanding of the immunobiology of inflammatory diseases. Trainees will also be required to attend seminars and conferences that are devoted to clinical and translational aspects of rheumatology. This aspect of the training program provides exposure to clinical issues and points out opportunities for new research directions. Thus, this program has a distinguished track record of training physician-scientists and will continue to produce high quality researchers interested in immunologic aspects of the rheumatic diseases.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Arthritis and Musculoskeletal and Skin Diseases Special Grants Review Committee (AMS)
Program Officer
Mancini, Marie
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Internal Medicine/Medicine
Schools of Medicine
Saint Louis
United States
Zip Code
Rodriguez, Marisela R; Monte, Kristen; Thackray, Larissa B et al. (2014) ISG15 functions as an interferon-mediated antiviral effector early in the murine norovirus life cycle. J Virol 88:9277-86
Schoggins, John W; MacDuff, Donna A; Imanaka, Naoko et al. (2014) Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505:691-5
Pittman, Cory B; Davis, Lisa A; Zeringue, Angelique L et al. (2014) Myocardial infarction risk among patients with fractures receiving bisphosphonates. Mayo Clin Proc 89:43-51
Park, Hyon Ju; Guariento, Mara; Maciejewski, Mateusz et al. (2014) Using mutagenesis and structural biology to map the binding site for the Plasmodium falciparum merozoite protein PfRh4 on the human immune adherence receptor. J Biol Chem 289:450-63
Tarbox, James A; Keppel, Molly P; Topcagic, Nermina et al. (2014) Elevated double negative T cells in pediatric autoimmunity. J Clin Immunol 34:594-9
Harbour, J William; Roberson, Elisha D O; Anbunathan, Hima et al. (2013) Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nat Genet 45:133-5
Ambati, Jayakrishna; Atkinson, John P; Gelfand, Bradley D (2013) Immunology of age-related macular degeneration. Nat Rev Immunol 13:438-51
Roberson, Elisha D O; Liu, Ying; Ryan, Caitriona et al. (2012) A subset of methylated CpG sites differentiate psoriatic from normal skin. J Invest Dermatol 132:583-92
Jordan, Catherine T; Cao, Li; Roberson, Elisha D O et al. (2012) Rare and common variants in CARD14, encoding an epidermal regulator of NF-kappaB, in psoriasis. Am J Hum Genet 90:796-808
Jordan, Catherine T; Cao, Li; Roberson, Elisha D O et al. (2012) PSORS2 is due to mutations in CARD14. Am J Hum Genet 90:784-95

Showing the most recent 10 out of 37 publications