This program provides interdisciplinary training in muscle biology for pre- and postdoctoral students. The program emphasizes the functional, structural and molecular properties of skeletal, cardiac and smooth muscle, and the modification of these properties in various disease states. 17 of our faculty members come from 3 basic science departments (Biochemistry and Molecular Biology, Pharmacology and Experimental Therapeutics and Physiology) and from the Department of Medicine at the School of Medicine, University of Maryland Baltimore (UMB), and 1 from the School of Nursing, UMB. Affiliate faculty also come from 1 department in the College of Engineering at our sister campus, University of Maryland Baltimore County and from Morgan State University. Trainees are drawn from all of the participating departments and from our interdepartmental PhD Programs. Reflecting our diversity of faculty backgrounds, the training offered ranges from the molecular biological determinants of muscle development and molecular aspects of structure and function of muscle proteins through cell biological aspects of muscle cytoskeleton and matrix, biophysical and physiological analysis of individual muscle cell function and biomechanical properties of whole muscles and muscular organs, and the effects of muscle disease at all these levels of examination. Our faculty is nationally and internationally recognized in the areas of calcium control of muscle function and muscle cytoskeleton and matrix. Our students will receive training in these and in a variety of related areas, with emphasis on the use of several complimentary techniques to approach each question under investigation. The major didactic aspect of the predoctoral training is two one- semester interdisciplinary courses on muscle that are already regularly offered by the program faculty and which have been well received by past student groups. Program activities include an annual on campus Mini-Retreat which includes trainee posters and a well known muscle researcher as program visitor and keynote speaker, a semi annual Wade Memorial lectureship and monthly Muscle Program Laboratory Rounds lunch meetings for all trainees, as well as training in professional development and grant writing, and in the responsible conduct of research. We will continue at our present level of 5 predoctoral trainees and 6 postdoctoral trainees throughout the renewal period. Entering predoctoral trainees will continue to have a solid background in biology, chemistry and/or physics, excellent GRE scores and strong letters of recommendation. Incoming postdoctoral trainees will have completed a solid PhD thesis and have strong letters of recommendation. Trainees from this program will be prepared to bring a wide range of approaches to bear on answering basic questions in muscle biology and on the bases for muscle diseases and their possible treatment and eventual cure. This program therefore serves a national need for competent multi-disciplinary investigators of muscle function and disease.

Public Health Relevance

Muscular dystrophies and other primary diseases of skeletal muscle, as well as muscle dysfunction and the resulting impaired mobility occurring as a secondary effect of immobility, aging or other disease states, remain important public health issues. This program will train pre- and postdoctoral trainees in an interdisciplinary approach to the study of muscle and muscle disease at the molecular, cellular, tissue, organ and whole animal levels. Our trainees will provide an important future resource in the search for remedies and eventual cures for a variety of primary and secondary diseases of muscle.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32AR007592-18
Application #
8530016
Study Section
Arthritis and Musculoskeletal and Skin Diseases Special Grants Review Committee (AMS)
Program Officer
Boyce, Amanda T
Project Start
1996-05-01
Project End
2016-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
18
Fiscal Year
2013
Total Cost
$429,151
Indirect Cost
$38,094
Name
University of Maryland Baltimore
Department
Biochemistry
Type
Schools of Medicine
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Banks, Quinton; Pratt, Stephen Joseph Paul; Iyer, Shama Rajan et al. (2018) Optical Recording of Action Potential Initiation and Propagation in Mouse Skeletal Muscle Fibers. Biophys J 115:2127-2140
Collier, Alyssa F; Gumerson, Jessica; Lehtimäki, Kimmo et al. (2018) Effect of Ibuprofen on Skeletal Muscle of Dysferlin-Null Mice. J Pharmacol Exp Ther 364:409-419
Ackermann, Maegen A; Shriver, Marey; Perry, Nicole A et al. (2018) Correction: Obscurins: Goliaths and Davids Take over Non-Muscle Tissues. PLoS One 13:e0190842
Sanchez, Benjamin; Iyer, Shama R; Li, Jia et al. (2017) Non-invasive assessment of muscle injury in healthy and dystrophic animals with electrical impedance myography. Muscle Nerve 56:E85-E94
Lyons, James S; Joca, Humberto C; Law, Robert A et al. (2017) Microtubules tune mechanotransduction through NOX2 and TRPV4 to decrease sclerostin abundance in osteocytes. Sci Signal 10:
Hu, Li-Yen R; Ackermann, Maegen A; Hecker, Peter A et al. (2017) Deregulated Ca2+ cycling underlies the development of arrhythmia and heart disease due to mutant obscurin. Sci Adv 3:e1603081
Melville, Zephan; Hernández-Ochoa, Erick O; Pratt, Stephen J P et al. (2017) The Activation of Protein Kinase A by the Calcium-Binding Protein S100A1 Is Independent of Cyclic AMP. Biochemistry 56:2328-2337
Iyer, Shama R; Xu, Su; Stains, Joseph P et al. (2017) Superparamagnetic Iron Oxide Nanoparticles in Musculoskeletal Biology. Tissue Eng Part B Rev 23:373-385
Bittle, Gregory J; Wehman, Brody; Karathanasis, Sotirios K et al. (2017) Clinical Progress in Cell Therapy for Single Ventricle Congenital Heart Disease. Circ Res 120:1060-1062
Coburn, Katherine; Melville, Zephan; Aligholizadeh, Ehson et al. (2017) Crystal structure of the human heterogeneous ribonucleoprotein A18 RNA-recognition motif. Acta Crystallogr F Struct Biol Commun 73:209-214

Showing the most recent 10 out of 144 publications