The motivation for creation of this training program is the emergence and maturation of the field of regenerative medicine, especially as it relates to musculoskeletal disease. Investigational focus will be on the reconstitution of injured or missing musculoskeletal tissues with cells and small molecules embedded in a bioscaffold or matrix that possesses a nanostructure similar to that of the native tissue. We will focus training efforts on both the pre- and post-doctoral level trainees, the latter involving both Ph.D.s and M.D.s, intent on a career in interdisciplinary academic medicine in the general area of regenerative-restorative medicine. The first primary goal will be to provide trainees with combinatorial skill sets in 1) stem cell and developmental biology, 2) molecular genetics, 3) tissue engineering and materials science, 4) state-of the-art technologies in high-throughput, large scale computational science and 5) clinical-translational medicine that can be layered on top of their preceding undergraduate and graduate training in one of these areas. The second primary goal will be to educate trainees in an integrated approach to regenerative medicine with hands-on project-oriented teaching in how to i] build, ii] operate in and iii] modify a multidisciplinary team of colleagues. We will create and maintain an Interdisciplinary Institute of Musculoskeletal Regenerative Medicine (IIMSRM) composed of a tripartite team of 1) a training faculty, 2) a clinical faculty mentor and 3) a trainee. This team approach will ensure that the trainees will receive a comprehensive bench-to-bedside experience in what is required to actualize a bioengineered therapeutic in """"""""real world"""""""" terms. This translational research structure will be supported by a robust collection of didactic curricula and seminar series, designed to introduce and refine the skills needed by both pre- and post-doctoral trainees to understand, design, compose, undertake and earn extramural financial support for a research project in regenerative medicine. The IIMSRM research and didactic training program is designed to provide individual trainees two years of support in preparation for their transition into more specialized training and alternative sources of support.

Public Health Relevance

of the educational and research initiatives in this training program to the health of Americans encompasses the need to train the next generation of biomedical scientists in i) the application of cutting edge conceptual and technical strategies to musculoskeletal regenerative medicine and ii) the multidisciplinary, team approach required use those strategies from the laboratory to the bedside.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32AR059033-03
Application #
8521890
Study Section
Arthritis and Musculoskeletal and Skin Diseases Special Grants Review Committee (AMS)
Program Officer
Wang, Fei
Project Start
2011-08-11
Project End
2016-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
3
Fiscal Year
2013
Total Cost
$211,687
Indirect Cost
$17,203
Name
University of California Los Angeles
Department
Orthopedics
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Zoller, Stephen D; Toy, Kristin A; Wang, Peter et al. (2017) Temporal relation of meniscal tear incidence, severity, and outcome scores in adolescents undergoing anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 25:215-221
Ajiboye, Remi M; Zoller, Stephen D; Ashana, Adedayo A et al. (2017) Regression of Disc-Osteophyte Complexes Following Laminoplasty Versus Laminectomy with Fusion for Cervical Spondylotic Myelopathy. Int J Spine Surg 11:17
Arshi, Armin; Sharim, Justin; Park, Don Y et al. (2017) Chondrosarcoma of the Osseous Spine: An Analysis of Epidemiology, Patient Outcomes, and Prognostic Factors Using the SEER Registry From 1973 to 2012. Spine (Phila Pa 1976) 42:644-652
Ajiboye, Remi M; Zoller, Stephen D; Sharma, Akshay et al. (2017) Intraoperative Neuromonitoring for Anterior Cervical Spine Surgery: What Is the Evidence? Spine (Phila Pa 1976) 42:385-393
Arshi, Armin; Sharim, Justin; Park, Don Y et al. (2017) Prognostic determinants and treatment outcomes analysis of osteosarcoma and Ewing sarcoma of the spine. Spine J 17:645-655
Park, Eddie; Guo, Jiguang; Shen, Shihao et al. (2017) Population and allelic variation of A-to-I RNA editing in human transcriptomes. Genome Biol 18:143
Hu, Yan; Hegde, Vishal; Johansen, Daniel et al. (2017) Combinatory antibiotic therapy increases rate of bacterial kill but not final outcome in a novel mouse model of Staphylococcus aureus spinal implant infection. PLoS One 12:e0173019
Ajiboye, Remi M; D'Oro, Anthony; Ashana, Adedayo O et al. (2017) Routine Use of Intraoperative Neuromonitoring During ACDFs for the Treatment of Spondylotic Myelopathy and Radiculopathy Is Questionable: A Review of 15,395 Cases. Spine (Phila Pa 1976) 42:14-19
Ajiboye, Remi M; Zoller, Stephen D; D'Oro, Anthony et al. (2017) Utility of Intraoperative Neuromonitoring for Lumbar Pedicle Screw Placement Is Questionable: A Review of 9957 Cases. Spine (Phila Pa 1976) 42:1006-1010
Wehling-Henricks, Michelle; Li, Zhenzhi; Lindsey, Catherine et al. (2016) Klotho gene silencing promotes pathology in the mdx mouse model of Duchenne muscular dystrophy. Hum Mol Genet 25:2465-2482

Showing the most recent 10 out of 38 publications