The purpose of this Predoctoral Training Program is to facilitate the advancement of outstanding young investigators in Translational Musculoskeletal Research. This resubmission application seeks funding for four predoctoral slots per year to conduct research at the intersection of clinical medicine and surgery and basic science and engineering. The trainees will obtain a Ph.D. degree in Bioengineering or Materials Science and Engineering, typically five years in duration, with two years to be supported by this training grant. Mentorship for the program comes from a core of 21 well-funded and active faculty members in Departments or Divisions at the University of California, San Diego, while the university itself and local hospitals and research institutions offer state of the art research laboratories and resources. The program's formal course curriculum provides an interdisciplinary, innovative and rigorous educational experience. Trainees conduct doctoral research under the guidance of two mentors, one providing a basic science perspective, the other a clinical one. This mentorship structure will stimulate an interdisciplinary training environment conducive to fruitful research and discovery in musculoskeletal translation. Additionally, key aspects of the training program include: a clinical rotation with a clinical mentr in order to obtain a first- hand perspective of musculoskeletal disorders, participation in prominent conferences, career mentorship, training in grantsmanship, and weekly seminars from prominent speakers in fields including bioengineering, orthopaedic surgery and rheumatology. Trainees will thereby develop interdisciplinary research skills, between the bench and bedside, allowing them to springboard to careers that will improve the treatment, diagnosis, and prevention of musculoskeletal diseases and conditions.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-CHW (M2))
Program Officer
Wang, Fei
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Engineering (All Types)
Schools of Arts and Sciences
La Jolla
United States
Zip Code
Sato, Eugene J; Killian, Megan L; Choi, Anthony J et al. (2015) Architectural and biochemical adaptations in skeletal muscle and bone following rotator cuff injury in a rat model. J Bone Joint Surg Am 97:565-73
Meyer, Gretchen A; Farris, Ashley L; Sato, Eugene et al. (2015) Muscle progenitor cell regenerative capacity in the torn rotator cuff. J Orthop Res 33:421-9
Chapman, Mark A; Pichika, Rajeswari; Lieber, Richard L (2015) Collagen crosslinking does not dictate stiffness in a transgenic mouse model of skeletal muscle fibrosis. J Biomech 48:375-8
Meyer, Gretchen A; Gibbons, Michael C; Sato, Eugene et al. (2015) Epimuscular Fat in the Human Rotator Cuff Is a Novel Beige Depot. Stem Cells Transl Med 4:764-74
Chapman, Mark A; Zhang, Jianlin; Banerjee, Indroneal et al. (2014) Disruption of both nesprin 1 and desmin results in nuclear anchorage defects and fibrosis in skeletal muscle. Hum Mol Genet 23:5879-92
Mologne, Timothy S; Cory, Esther; Hansen, Bradley C et al. (2014) Osteochondral allograft transplant to the medial femoral condyle using a medial or lateral femoral condyle allograft: is there a difference in graft sources? Am J Sports Med 42:2205-13
Novitskaya, Ekaterina; Zin, Carolyn; Chang, Neil et al. (2014) Creep of trabecular bone from the human proximal tibia. Mater Sci Eng C Mater Biol Appl 40:219-27
Gillies, Allison R; Bushong, Eric A; Deerinck, Thomas J et al. (2014) Three-dimensional reconstruction of skeletal muscle extracellular matrix ultrastructure. Microsc Microanal 20:1835-40
Sato, Eugene J; Killian, Megan L; Choi, Anthony J et al. (2014) Skeletal muscle fibrosis and stiffness increase after rotator cuff tendon injury and neuromuscular compromise in a rat model. J Orthop Res 32:1111-6
Frandsen, Christine J; Brammer, Karla S; Noh, Kunbae et al. (2014) Tantalum coating on TiO2 nanotubes induces superior rate of matrix mineralization and osteofunctionality in human osteoblasts. Mater Sci Eng C Mater Biol Appl 37:332-41

Showing the most recent 10 out of 16 publications