The top priority of the Tumor Cell Biology Training (TCB) Grant is identification and training of the next generation of cancer biologists. Our goal is to provide trainees with the tools to be leaders in their prospective fields and to communicate in varied languages (pathology, oncology, molecular biology, engineering, chemistry, bioinformatics and biomathematics) related to modern medicine and biomedical research. The TCB Program focuses on training predoctoral and postdoctoral students in all aspects directly related to mechanisms of tumorigenesis. As such, supported training positions are focused on mechanisms of oncogenesis that evaluate oncogenes, tumor suppressor genes, dysregulated gene expression, aberrant signal transduction pathways, cell-of-origins for various cancers and so forth within the tumor cell population itself. We also have supported trainees with interests in the tumor cell microenvironment, such as in the area of abnormal angiogenesis, and in areas related to the interface of engineering and imaging with cancer. The development of cancer specialty tracks in brain and prostate cancers, cancer stem cells, tumor microenvironment and tumor epigenetics, offer fundamental new opportunities for Cancer training that will be highlighted in this renewal application. In addition, we highlight novel training structures developed at UCLA in order to foster more collaborative interactions in a multidisciplinary environment. In particular, the establishment of the Institute for Molecular Medicine (IMED) within the David Geffen School of Medicine at UCLA provides both infrastructure and a platform for multi-disciplinary training and team work in disease focused areas, including cancer. Expertise in the new area of cancer metabolomics, which offer opportunities for novel projects are now available in house, and provide opportunities for expansion of established projects that may gain added depth and breadth. Continued development of integrative technologies that facilitate high throughput screening for genetic polymorphisms and gene and protein expression on global scales are also supported and trainees that can communicate in all these approaches will support the promise for new advances in cancer research. Further developments require training of students who can increasingly bridge disciplines and communicate freely with experts in diverse areas of expertise. Our graduate student population for the TCB program is drawn from seven PhD-granting Departments and two multidepartmental umbrella organizations which support recruitment and admission mechanisms for 11 doctoral degree granting programs in the Molecular, Cellular and Integrated Life Sciences. Faculty of these degree granting entities currently train 351 doctoral students. These faculty also currently mentor and 387 postdoctoral fellows, creating a dynamic community and a diverse training environment in biomedical research. Collectively, our Program faculty are training a total of over 61 predoctoral and 73 postdoctoral trainees during the current year. Trainees in this program constitute approximately 5% of the predoctoral and 10% of the postdoctoral trainees of our mentors. Therefore, the training program plays an essential role in supporting the creativity and productivity of our key cancer research faculty.

Public Health Relevance

of the educational and research initiatives in this training program to the health of Americans encompasses the need to train the next generation of biomedical scientists and clinician scientists in i) the application of cutting edge conceptual and technical strategies to cancer biology and medicine and ii) the multidisciplinary, team approaches required to use those strategies from the laboratory to the bedside.

National Institute of Health (NIH)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Subcommittee B - Comprehensiveness (NCI)
Program Officer
Lim, Susan E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Other Basic Sciences
Schools of Medicine
Los Angeles
United States
Zip Code
Thai, Minh; Graham, Nicholas A; Braas, Daniel et al. (2014) Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication. Cell Metab 19:694-701
Shurell, Elizabeth; Tran, Linh M; Nakashima, Jonathan et al. (2014) Gender dimorphism and age of onset in malignant peripheral nerve sheath tumor preclinical models and human patients. BMC Cancer 14:827
Garcia, Alejandro J; Ruscetti, Marcus; Arenzana, Teresita L et al. (2014) Pten null prostate epithelium promotes localized myeloid-derived suppressor cell expansion and immune suppression during tumor initiation and progression. Mol Cell Biol 34:2017-28
Kang, Mijeong; Eichhorn, Catherine D; Feigon, Juli (2014) Structural determinants for ligand capture by a class II preQ1 riboswitch. Proc Natl Acad Sci U S A 111:E663-71
Freedman, Adam H; Gronau, Ilan; Schweizer, Rena M et al. (2014) Genome sequencing highlights the dynamic early history of dogs. PLoS Genet 10:e1004016
Arensman, Michael D; Telesca, Donatello; Lay, Anna R et al. (2014) The CREB-binding protein inhibitor ICG-001 suppresses pancreatic cancer growth. Mol Cancer Ther 13:2303-14
Nathanson, David A; Gini, Beatrice; Mottahedeh, Jack et al. (2014) Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343:72-6
Arensman, M D; Kovochich, A N; Kulikauskas, R M et al. (2014) WNT7B mediates autocrine Wnt/?-catenin signaling and anchorage-independent growth in pancreatic adenocarcinoma. Oncogene 33:899-908
White, A C; Khuu, J K; Dang, C Y et al. (2014) Stem cell quiescence acts as a tumour suppressor in squamous tumours. Nat Cell Biol 16:99-107
Smith, Daniel A; Kiba, Atsushi; Zong, Yang et al. (2013) Interleukin-6 and oncostatin-M synergize with the PI3K/AKT pathway to promote aggressive prostate malignancy in mouse and human tissues. Mol Cancer Res 11:1159-65

Showing the most recent 10 out of 131 publications