The main objective of this training program in The Molecular Genetics of Cancer is to prepare predoctoral (4) and postdoctoral (5) trainees for careers in cancer research. The training program is based at the world renowned M. D. Anderson Cancer Center. Faculty are collegial and interactive, and belong to five departments, one clinical, with cross appointments in other clinical departments. The interests of the faculty include the study of tumor suppressors (p53, PTEN, WT1, Brca1), genetic modifiers of the cancer phenotype, inherited cancer syndromes, the DNA damage response, DNA recombination and repair, telomere biology, genomic instability, cell regulation, chromatin modification in cancers, and regulators of cell proliferation and apoptosis. The faculty use genetic and biochemical assays, animal models and human samples to understand the normal and abnormal mechanisms that govern cell proliferation and death. Trainees will choose a research mentor of their choice, and submit their applications to open training grant positions. If highly qualified, they will be selected and supported for a maximum of three years with annual review. Trainees will attend classes and receive instruction in the responsible conduct of research. They will attend seminars, journal clubs, and the annual program retreat. They will learn presentation and grant writing skills. They will be encouraged to attend and present at national meetings. The faculty and the interactive environment of MDACC and the Texas Medical Center will stimulate trainees to achieve a life long commitment to Making Cancer History".

Public Health Relevance

An estimated 565,000 Americans will die of cancer this year. The complexity and heterogeneity of the cancer phenotype, the existence of multiple pathways that control cell proliferation and death suggest that cancer is an individual disease. We have much to learn.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Program Officer
Lim, Susan E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
Other Domestic Higher Education
United States
Zip Code
Yang, Yanan; Ahn, Young-Ho; Chen, Yulong et al. (2014) ZEB1 sensitizes lung adenocarcinoma to metastasis suppression by PI3K antagonism. J Clin Invest 124:2696-708
Klein, Brianna J; Piao, Lianhua; Xi, Yuanxin et al. (2014) The histone-H3K4-specific demethylase KDM5B binds to its substrate and product through distinct PHD fingers. Cell Rep 6:325-35
Chen, Limo; Gibbons, Don L; Goswami, Sangeeta et al. (2014) Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun 5:5241
Fuentes-Mattei, Enrique; Velazquez-Torres, Guermarie; Phan, Liem et al. (2014) Effects of obesity on transcriptomic changes and cancer hallmarks in estrogen receptor-positive breast cancer. J Natl Cancer Inst 106:
Huang, Cheng-Chiu; Orvis, Grant D; Kwan, Kin Ming et al. (2014) Lhx1 is required in Müllerian duct epithelium for uterine development. Dev Biol 389:124-36
Pant, Vinod; Xiong, Shunbin; Jackson, James G et al. (2013) The p53-Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity. Genes Dev 27:1857-67
Scherfer, Christoph; Han, Violet C; Wang, Yan et al. (2013) Autophagy drives epidermal deterioration in a Drosophila model of tissue aging. Aging (Albany NY) 5:276-87
Larsson, Connie A; Cote, Gilbert; Quintas-Cardama, Alfonso (2013) The changing mutational landscape of acute myeloid leukemia and myelodysplastic syndrome. Mol Cancer Res 11:815-27
Schliekelman, Mark J; Gibbons, Don L; Faca, Vitor M et al. (2011) Targets of the tumor suppressor miR-200 in regulation of the epithelial-mesenchymal transition in cancer. Cancer Res 71:7670-82
Griswold, Shannon L; Sajja, Krishna C; Jang, Chuan-Wei et al. (2011) Generation and characterization of iUBC-KikGR photoconvertible transgenic mice for live time-lapse imaging during development. Genesis 49:591-8

Showing the most recent 10 out of 38 publications