This application requests funds to continue the highly successful Cancer Biology training program at the Stanford University School of Medicine entitled "Cancer Etiology, Prevention, Detection and Diagnosis". This Interdisciplinary Program provides our faculty, especially those in non-degree granting departments (e.g., Radiation Oncology and Pathology), the opportunity to recruit and mentor top-notch graduate students and postdoctoral fellows. The goal of this program is to provide the very best training for its predoctoral and postdoctoral trainees so that they become successful and independent leaders in the field of cancer research. The program accomplishes this goal by providing each graduate and postdoctoral trainee with a broad and comprehensive curriculum, a vast array of educational resources, such as seminars, lectures, conferences and workshops specifically geared towards the biology of cancer, a faculty comprised of 82 exceptional preceptors spanning 23 departments with extensive experience in cancer research mentoring, and an unparalleled research environment. In addition, postdoctoral trainees are expected to participate in the same seminar series, conferences and presentations as graduate students, but will only audit courses that will aid them in their research and achieving their career goals. As a prelude to our postdoctoral trainees becoming independent scientists, they are expected to learn to effectively write grants, and obtain their own individual funding. They will also learn more extensive professional skills such as lab management and mentoring to more successfully compete in today's job market. A key strength of the program is its true multidisciplinary approach to cancer research incorporating such fields as molecular biology, genetics, cell biology, computational biology and bioinformatics, comparative oncology, developmental biology, tumor biology, as well as biotechnology development for use in cancer diagnosis and therapeutics. The success of the Cancer Biology training program is demonstrated by its track record of attracting outstanding and talented predoctoral and postdoctoral candidates to Stanford University and placing graduates of the program in high profile competitive cancer research positions. To aid in the further development of the training program we have recently created a four-member Advisory Board consisting of highly accomplished members of the Stanford research community and one external advisor. Finally, during the next five year period we will develop a Cancer Systems Biology research focus to train the researchers in cancer biology who are adept at the computational analysis of highly complex related data sets.

Public Health Relevance

This is the renewal application for the T32 predoctoral and postdoctoral training grant in Cancer Etiology, Prevention, Detection and Diagnosis that is in its 36th year. The program has developed a thriving and innovative training environment as well as an effective administrative infrastructure that has been very successful in attracting highly qualified predoctoral and postdoctoral fellows to Stanford University. This next funding period, we intend to build on this success and to refine further the program to prepare our predoctoral and postdoctoral trainees to become independent and self-reliant scientists, who take positions as junior faculty in academic or research institutions, biotechnology industries or government laboratories

National Institute of Health (NIH)
National Cancer Institute (NCI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Program Officer
Lim, Susan E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Schools of Medicine
United States
Zip Code
Atwood, Scott X; Oro, Anthony E (2014) "Atypical" regulation of Hedgehog-dependent cancers. Cancer Cell 25:133-4
Gopinath, Suchitra D; Webb, Ashley E; Brunet, Anne et al. (2014) FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal. Stem Cell Reports 2:414-26
Popov, Lauren; Kovalski, Joanna; Grandi, Guido et al. (2014) Three-Dimensional Human Skin Models to Understand Staphylococcus aureus Skin Colonization and Infection. Front Immunol 5:41
Webster, Dan E; Barajas, Brook; Bussat, Rose T et al. (2014) Enhancer-targeted genome editing selectively blocks innate resistance to oncokinase inhibition. Genome Res 24:751-60
Martín, Glòria Mas; King, Devin A; Green, Erin M et al. (2014) Set5 and Set1 cooperate to repress gene expression at telomeres and retrotransposons. Epigenetics 9:513-22
Wan, Yue; Qu, Kun; Zhang, Qiangfeng Cliff et al. (2014) Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505:706-9
Finger, E C; Cheng, C-F; Williams, T R et al. (2014) CTGF is a therapeutic target for metastatic melanoma. Oncogene 33:1093-100
Webb, Ashley E; Pollina, Elizabeth A; Vierbuchen, Thomas et al. (2013) FOXO3 shares common targets with ASCL1 genome-wide and inhibits ASCL1-dependent neurogenesis. Cell Rep 4:477-91
Kuo, Hsu-Ping; Wang, Zhong; Lee, Dung-Fang et al. (2013) Epigenetic roles of MLL oncoproteins are dependent on NF-*B. Cancer Cell 24:423-37
Moore, Kaitlyn E; Carlson, Scott M; Camp, Nathan D et al. (2013) A general molecular affinity strategy for global detection and proteomic analysis of lysine methylation. Mol Cell 50:444-56

Showing the most recent 10 out of 146 publications