This is a competing renewal application that requests continued support for providing pre- and postdoctoral trainees with strong methodological and practical training in quantitative cancer research at the Harvard Public School of Public Health and Dana-Farber Cancer Institute (DFCI). This training program, now in its 30th year, draws upon a distinguished faculty, consisting of biostatisticians and computational biologists, as well as world renowned experts in cancer treatment and research. Its overarching goal is to provide the trainees with all essential elements of training needed to successfully undertake modern cancer research. The specific goals of this training program are to train students and postdoctoral fellows to be (1) quantitative scientists in cancer research, who are capable of using probability, statistics, computer science and mathematics to increase our knowledge and understanding of cancer;(2) strong team leaders/players as well as excellent communicators in a cancer research environment, who can effectively disseminate their research results and assume active roles in the design, analysis and interpretation of cancer clinical trials, cancer prevention trials and cancer genomic studies. All predoctoral students supported by this training grant are required to take a concentration in cancer-related courses. During their first and second summer periods in the program, students are required to participate in research activities of the Dana-Farber Cancer Institute (DFCI), performed under the supervision of faculty mentor/trainers affiliated in the program. Afterwards, many of these students will take up residence at the DFCI and continue their research in cancer, which eventually evolves into their dissertation projects. All the postdoctoral fellows are closely involved with the practice of quantitative sciences in cancer and are in residence at the DFCI. All trainees are required to actively participate in the a working group seminar series on quantitative issues in cancer research, which serves as a primary forum at Harvard to discuss current issues and challenges on this topic. This proposal requests funding to support 10 pre-doctoral students and 1 post-doctoral fellow for 5 years.

Public Health Relevance

The training program is to train students and postdoctoral fellows to be high quality quantitative researchers who are capable of conducting cutting edge methodological and collaborative research in cancer clinical trials, computational biology, cancer genomics, cancer epidemiology and population science. Also, the program trains quantitative researchers to become strong team leaders/players as well as excellent communicators in a cancer research environment, and to enable them to effectively disseminate their research results and to assume active roles in the design, analysis and interpretation of, for example, cancer genomic studies, cancer clinical trials and cancer prevention trials.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Program Officer
Damico, Mark W
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
Biostatistics & Other Math Sci
Schools of Public Health
United States
Zip Code
Love, Michael I; Hogenesch, John B; Irizarry, Rafael A (2016) Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation. Nat Biotechnol 34:1287-1291
Haneuse, Sebastien; Bogart, Andy; Jazic, Ina et al. (2016) Learning About Missing Data Mechanisms in Electronic Health Records-based Research: A Survey-based Approach. Epidemiology 27:82-90
Li, Shuli; Gray, Robert J (2016) Estimating treatment effect in a proportional hazards model in randomized clinical trials with all-or-nothing compliance. Biometrics 72:742-50
Teng, Mingxiang; Love, Michael I; Davis, Carrie A et al. (2016) A benchmark for RNA-seq quantification pipelines. Genome Biol 17:74
Collado-Torres, Leonardo; Nellore, Abhinav; Frazee, Alyssa C et al. (2016) Flexible expressed region analysis for RNA-seq with derfinder. Nucleic Acids Res :
Lazar, Ann A; Bonetti, Marco; Cole, Bernard F et al. (2016) Identifying treatment effect heterogeneity in clinical trials using subpopulations of events: STEPP. Clin Trials 13:169-79
Love, Michael I; Anders, Simon; Kim, Vladislav et al. (2015) RNA-Seq workflow: gene-level exploratory analysis and differential expression. F1000Res 4:1070
Loeb, Stacy; Peskoe, Sarah B; Joshu, Corinne E et al. (2015) Do environmental factors modify the genetic risk of prostate cancer? Cancer Epidemiol Biomarkers Prev 24:213-20
Baniecki, Mary Lynn; Faust, Aubrey L; Schaffner, Stephen F et al. (2015) Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections. PLoS Negl Trop Dis 9:e0003539
Matsouaka, Roland A; Betensky, Rebecca A (2015) Power and sample size calculations for the Wilcoxon-Mann-Whitney test in the presence of death-censored observations. Stat Med 34:406-31

Showing the most recent 10 out of 81 publications