The proposal is to continue a training program in cancer research at Columbia University that was established in 1984. The rationale of the Cancer Biology Training Program is to identify and recruit individuals with outstanding potential and prepare them for highly productive careers in cancer research. This will be achieved by offering a rigorous didactic curriculum, providing opportunities for cancer research in the laboratories of Columbia University faculty, and fostering an interactive environment in which trainees can gain exposure to the full range of scientific disciples involved in cancer research. Funds are requested to support 6 postdoctoral and 4 predoctoral trainees annually. Training is provided by a Program Faculty comprised of 37 independent cancer scientists, most of whom are well funded by grants from the NCI (and other cancer-focused organizations) and highly productive in terms of cancer research. The participating faculty are selected on the basis of the cancer focus and quality of their research programs, their record of productive interactions with other cancer investigators, and their experience in training postdoctoral fellows and predoctoral students. The Predoctoral and Postdoctoral Trainees are chosen competitively according to the cancer focus and quality of their proposed research project, their past academic and research performance, their future potential as independent investigators, and their commitment to a career in cancer research. The Cancer Biology Training Program has benefited greatly from a recent expansion of cancer research at Columbia University Medical Center. This expansion was driven by the opening in 2005 of the Irving Cancer Research Center, a new 300,000 square-foot 10-story building devoted entirely to cancer research, and the continuing recruitment of leading scientists in the basic/translational, clinical and population arenas of cancer research. These developments have broadened the scope and enhanced the quality of the Cancer Biology Training Program, as well as attracted a superior pool of trainees seeking careers in cancer research.

Public Health Relevance

Despite significant progress, cancer remains a critical health problem and a major cause of mortality worldwide. Given the complexity of the malignant process and the distinct etiologic and therapeutic features of the various subtypes of human cancer, cancer research will remain a high priority for society in years to come. Therefore, the next generation of scientists must be imparted with the skills to conduct cancer research in a rigorous, innovative, and productive manner. Accordingly, goal of the Cancer Biology Training Program is to identify and recruit individuals with outstanding potential and prepare them for highly productive careers in cancer research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Institutional National Research Service Award (T32)
Project #
5T32CA009503-27
Application #
8538879
Study Section
Subcommittee G - Education (NCI)
Program Officer
Lim, Susan E
Project Start
1984-09-01
Project End
2017-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
27
Fiscal Year
2013
Total Cost
$300,312
Indirect Cost
$25,951
Name
Columbia University (N.Y.)
Department
Pathology
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Weisberg, Stuart P; Smith-Raska, Matthew R; Esquilin, Jose M et al. (2014) ZFX controls propagation and prevents differentiation of acute T-lymphoblastic and myeloid leukemia. Cell Rep 6:528-40
Deng, Sarah K; Gibb, Bryan; de Almeida, Mariana Justino et al. (2014) RPA antagonizes microhomology-mediated repair of DNA double-strand breaks. Nat Struct Mol Biol 21:405-12
Wang, Shang-Jui; Gu, Wei (2014) To be, or not to be: functional dilemma of p53 metabolic regulation. Curr Opin Oncol 26:78-85
Hodakoski, Cindy; Hopkins, Benjamin D; Barrows, Douglas et al. (2014) Regulation of PTEN inhibition by the pleckstrin homology domain of P-REX2 during insulin signaling and glucose homeostasis. Proc Natl Acad Sci U S A 111:155-60
Heise, Nicole; De Silva, Nilushi S; Silva, Kathryn et al. (2014) Germinal center B cell maintenance and differentiation are controlled by distinct NF-?B transcription factor subunits. J Exp Med 211:2103-18
Arriagada, Gloria; Metzger, Michael J; Muttray, Annette F et al. (2014) Activation of transcription and retrotransposition of a novel retroelement, Steamer, in neoplastic hemocytes of the mollusk Mya arenaria. Proc Natl Acad Sci U S A 111:14175-80
Metzger, Michael J; Certo, Michael T (2014) Design and analysis of site-specific single-strand nicking endonucleases for gene correction. Methods Mol Biol 1114:237-44
Rhim, Andrew D; Oberstein, Paul E; Thomas, Dafydd H et al. (2014) Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25:735-47
Reeves, Claire; Charles-Horvath, Pelisa; Kitajewski, Jan (2013) Studies in mice reveal a role for anthrax toxin receptors in matrix metalloproteinase function and extracellular matrix homeostasis. Toxins (Basel) 5:315-26
Metzger, Michael J; Stoddard, Barry L; Monnat Jr, Raymond J (2013) PARP-mediated repair, homologous recombination, and back-up non-homologous end joining-like repair of single-strand nicks. DNA Repair (Amst) 12:529-34

Showing the most recent 10 out of 110 publications