The American Cancer Association estimates that 1.5 million citizens of the US are diagnosed with cancer each year. Approximately 50% of these cancer patients will undergo radiation therapy, which can provide definitive local regional tumor control, thus affording these patients with a durable progression free survival. Unfortunately, many tumors do not respond to irradiation. Elucidating the molecular mechanisms responsible for radiation therapy's failure to control tumor growth requires a critical understanding of Radiation Biology, a multi- disciplinary science that studies physics, biology, and medicine as it pertains to oncogenesis, tumor biology and normal tissue physiology. As important as Radiation Biology is for supporting Radiation Oncology's mission, there are very few such training programs in this country. The goal of this training grant is to continue to teach Postdoctoral Fellows to perform independent research in the area of Radiation Biology, so that they can make outstanding contributions to the fields of Radiation Oncology and Cancer Biology. We propose to accomplish this using a multi-faceted approach consisting of 1) training in the laboratories of outstanding scientists who utilize cutting edge techniques coupled with highly collaborative approaches, 2) multi- disciplinary seminar series designed to foster interactions between basic scientists and clinician/scientists who perform translational research, 3) didactic training in the areas of Radiation Biology, Radiation Physics, and Cancer Biology, 4) a grant writing workshop, 5) professional development, 6) training in laboratory management, and 7) Training in the Responsible Conduct of Research. Trainees must have completed a MD and/or a PhD prior to entering the program. The program is designed to train 3 Fellows for a duration ranging from 2 to 3 years. It is anticipated that 2 of the trainees will have just completed their PhD or MD and the third trainee will have 2 or 3 years Post Doctoral experience prior to entering our program. To date 70% of trainees who complete training tenure track assistant professors, staff scientists at pharmaceutical companies, or Radiation Oncology Residents on track to attain faculty positions. Of note, 30% of the trainees who have accepted offers to this program have been underrepresented minorities. Based on these successes, we submit that this training grant program is fulfilling the goals of the National Ruth L. Kirschstein National Research Service Award.

Public Health Relevance

Radiation oncology is an integral component of cancer therapy and radiation biology is the multi-disciplinary science used to identify and develop new radiation oncology therapies. Unfortunately, there is a lack of formal radiation biology training programs in this United States. This application seeks to continue its outstanding success in training MDs and PhDs in the field of radiation biology.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Program Officer
Damico, Mark W
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
Schools of Medicine
United States
Zip Code
Layer, Justin H; Alford, Catherine E; McDonald, W Hayes et al. (2016) LMO2 Oncoprotein Stability in T-Cell Leukemia Requires Direct LDB1 Binding. Mol Cell Biol 36:488-506
Sorace, Anna G; Quarles, C Chad; Whisenant, Jennifer G et al. (2016) Trastuzumab improves tumor perfusion and vascular delivery of cytotoxic therapy in a murine model of HER2+ breast cancer: preliminary results. Breast Cancer Res Treat 155:273-84
Sorace, Anna G; Syed, Anum K; Barnes, Stephanie L et al. (2016) Quantitative [(18)F]FMISO PET Imaging Shows Reduction of Hypoxia Following Trastuzumab in a Murine Model of HER2+ Breast Cancer. Mol Imaging Biol :
Kavanaugh, Gina; Zhao, Runxiang; Guo, Yan et al. (2015) Enhancer of Rudimentary Homolog Affects the Replication Stress Response through Regulation of RNA Processing. Mol Cell Biol 35:2979-90
Carrillo, Alexia M; Hicks, Mellissa; Khabele, Dineo et al. (2015) Pharmacologically Increasing Mdm2 Inhibits DNA Repair and Cooperates with Genotoxic Agents to Kill p53-Inactivated Ovarian Cancer Cells. Mol Cancer Res 13:1197-205
Barnes, Stephanie L; Sorace, Anna G; Loveless, Mary E et al. (2015) Correlation of tumor characteristics derived from DCE-MRI and DW-MRI with histology in murine models of breast cancer. NMR Biomed 28:1345-56
Mohni, Kareem N; Thompson, Petria S; Luzwick, Jessica W et al. (2015) A Synthetic Lethal Screen Identifies DNA Repair Pathways that Sensitize Cancer Cells to Combined ATR Inhibition and Cisplatin Treatments. PLoS One 10:e0125482
Schultz, Michelle A; Hagan, Sharika S; Datta, Amrita et al. (2014) Nrf1 and Nrf2 transcription factors regulate androgen receptor transactivation in prostate cancer cells. PLoS One 9:e87204
Sekhar, Konjeti R; Benamar, Mouadh; Venkateswaran, Amudhan et al. (2014) Targeting nucleophosmin 1 represents a rational strategy for radiation sensitization. Int J Radiat Oncol Biol Phys 89:1106-14
Mohni, Kareem N; Kavanaugh, Gina M; Cortez, David (2014) ATR pathway inhibition is synthetically lethal in cancer cells with ERCC1 deficiency. Cancer Res 74:2835-45

Showing the most recent 10 out of 34 publications