To improve cancer therapy, it is increasingly critical that advances in basic cancer research be translated to the clinic. In the Training Program in Cancer Therapeutics, the goal is to provide training to cancer researchers in the action of therapeutic agents used in the treatment of cancer. This Training Program will be multi-disciplinary and expose the trainees to both basic research involving cancer therapeutic agents and the clinical utilization of therapeutics. A particular emphasis will be placed on the mechanisms through which basic scientific discovery is brought into the clinic through clinical trials. To facilitate this training, a team of mentoring faculty and ancillary clinical faculty hasbeen recruited into the Training Program from the University of Cincinnati and Cincinnati Children's Hospital Medical Center. Mentors on this training program are independently funded, have experience in mentoring, and work on projects related to cancer therapy. The ancillary faculty are clinical partners on this proposal, who will educate on the clinical utilization of specific therapeutic modalities. Together, the mentors and ancillary faculty will provide training both through direct interactions and through specialized educational activities and course work for the Training Program. This Program will provide outstanding career development for trainees, as more emphasis is placed on translating basic scientific discovery into improved patient care. Logistically, the Training Program in Cancer Therapeutics has 17 mentors and 6 ancillary faculty. It is administered by the Principal Investigators and Administrative Committees, which are directed at training excellence and providing an ethnically and scientifically diverse group of trainees. The Training Program requests support for 6 postdoctoral and 2 predoctoral trainees. The program will be evaluated regularly through both internal and external review to ensure that the trainees are receiving the best possible training.

Public Health Relevance

The purpose of The Training Program in Cancer Therapeutics is to provide predoctoral and postdoctoral scientists training and mentorship on the action of therapeutic agents for use in the treatment of cancer. The training program will place emphasis on translating basic scientific discoveries into improved patient care and will incorporate mentors with expertise in the clinical and basic aspects of the use of therapeutic modalities.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Program Officer
Damico, Mark W
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Cincinnati
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Wagh, Purnima K; Gardner, Margaret A; Ma, Xiaolan et al. (2015) Cell- and developmental stage-specific Dicer1 ablation in the lung epithelium models cystic pleuropulmonary blastoma. J Pathol 236:41-52
Privette Vinnedge, L M; Benight, N M; Wagh, P K et al. (2015) The DEK oncogene promotes cellular proliferation through paracrine Wnt signaling in Ron receptor-positive breast cancers. Oncogene 34:2325-36
Wannemuehler, Michael J; Overstreet, Ann-Marie; Ward, Doyle V et al. (2014) Draft genome sequences of the altered schaedler flora, a defined bacterial community from gnotobiotic mice. Genome Announc 2:
Gandhi, Ujjawal H; Kaushal, Naveen; Hegde, Shailaja et al. (2014) Selenium suppresses leukemia through the action of endogenous eicosanoids. Cancer Res 74:3890-901
Gurusamy, Devikala; Ruiz-Torres, Sasha J; Johnson, Abby L et al. (2014) Hepatocyte growth factor-like protein is a positive regulator of early mammary gland ductal morphogenesis. Mech Dev 133:11-22
Vlaardingerbroek, Hester; Ng, Kenneth; Stoll, Barbara et al. (2014) New generation lipid emulsions prevent PNALD in chronic parenterally fed preterm pigs. J Lipid Res 55:466-77
Vasiliauskas, Juozas; Nashu, Madison A; Pathrose, Peterson et al. (2014) Hepatocyte growth factor-like protein is required for prostate tumor growth in the TRAMP mouse model. Oncotarget 5:5547-58
Zhao, H; Chen, M-S; Lo, Y-H et al. (2014) The Ron receptor tyrosine kinase activates c-Abl to promote cell proliferation through tyrosine phosphorylation of PCNA in breast cancer. Oncogene 33:1429-37
Premkumar, Vidjaya Letchoumy; Cranert, Stacey; Linger, Benjamin R et al. (2014) The 3' overhangs at Tetrahymena thermophila telomeres are packaged by four proteins, Pot1a, Tpt1, Pat1, and Pat2. Eukaryot Cell 13:240-5
Khandanpour, Cyrus; Phelan, James D; Vassen, Lothar et al. (2013) Growth factor independence 1 antagonizes a p53-induced DNA damage response pathway in lymphoblastic leukemia. Cancer Cell 23:200-14

Showing the most recent 10 out of 28 publications