The objective of this first renewal of the Integrated Biological Systems Training in Oncology (IBSTO) program is to continue to prepare predoctoral students and postdoctoral fellows for careers in cancer research with comprehensive training in basic and translational research. IBSTO training focuses on basic cellular processes and mechanisms that are shared between cell biology and developmental biology that are critical to understanding how cells become tumorigenic and on how to translate this basic research knowledge to the diagnosis, treatment and prevention of cancer. The IBSTO program takes place in an active and growing Medical Center environment with state-of-the-art facilities, a vibrant NCI-designated comprehensive cancer center, top-ranked basic science departments, an Interdisciplinary Graduate Program in Biomedical Sciences, and an active Office of Postdoctoral Affairs. The Program Director has a strong record of basic cancer research and administrative experience. In our first four years we have already recruited 22 outstanding predoctoral and postdoctoral trainees that have been very productive. Trainees have been placed with experienced, well-funded, productive preceptors in an interactive research environment with extensive resources. The three broad areas of experience of our preceptors are in cell biology, developmental biology/genetics and medicine. Each trainee has mentors from each group to provide unique and valuable perspectives to enhance their cancer-related research training. The goals of our training program are to provide proactive mentoring and oversight, provide cross-discipline education and research, provide training in cutting edge methodology, develop useful academic skills, foster interactions with faculty and other trainees, provide exposure to current cancer research discoveries, and provide exposure to clinical cancer treatment and translational research. In this renewal we have strengthened our clinical/translational component with the addition of an Associate Director and new preceptors who focus on translational research and new required clinical training experience in oncology. We strongly believe that integrating basic science research training in cell biology, developmental biology and genetics with translational and clinical experience allows a better understanding of the multiple lesions in cellular processes that define cancer, which is critical t diagnosing, treating and eventually preventing of this disease.

Public Health Relevance

The Integrated Biological Systems Training in Oncology (IBSTO) program prepares predoctoral students and postdoctoral fellows for careers in cancer research with comprehensive training in basic and translational research. The IBSTO program takes place in an active Medical Center environment with state-of-the-art facilities, experienced preceptors in an interactive education and research environment with extensive resources and insitutional commitment. The IBSTO program provides our productive trainees unique mentoring, useful academic skills, interactions with faculty and other trainees, exposure to current cancer research discoveries and exposure to clinical cancer treatment and translational research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Institutional National Research Service Award (T32)
Project #
2T32CA119925-06
Application #
8551189
Study Section
Subcommittee G - Education (NCI)
Program Officer
Damico, Mark W
Project Start
2006-04-01
Project End
2018-06-30
Budget Start
2013-07-05
Budget End
2014-06-30
Support Year
6
Fiscal Year
2013
Total Cost
$390,165
Indirect Cost
$28,974
Name
Vanderbilt University Medical Center
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Vilgelm, Anna E; Pawlikowski, Jeff S; Liu, Yan et al. (2015) Mdm2 and aurora kinase a inhibitors synergize to block melanoma growth by driving apoptosis and immune clearance of tumor cells. Cancer Res 75:181-93
Sturgill, Emma G; Das, Dibyendu Kumar; Takizawa, Yoshimasa et al. (2014) Kinesin-12 Kif15 targets kinetochore fibers through an intrinsic two-step mechanism. Curr Biol 24:2307-13
DeGraff, David J; Grabowska, Magdalena M; Case, Tom C et al. (2014) FOXA1 deletion in luminal epithelium causes prostatic hyperplasia and alteration of differentiated phenotype. Lab Invest 94:726-39
Chen, Tony W; Broadus, Matthew R; Huppert, Stacey S et al. (2014) Reconstitution Of ?-catenin degradation in Xenopus egg extract. J Vis Exp :
Ma, Hanhui; McLean, Janel R; Gould, Kathleen L et al. (2014) An efficient fluorescent protein-based multifunctional affinity purification approach in mammalian cells. Methods Mol Biol 1177:175-91
Rachfall, Nicole; Johnson, Alyssa E; Mehta, Sapna et al. (2014) Cdk1 promotes cytokinesis in fission yeast through activation of the septation initiation network. Mol Biol Cell 25:2250-9
Grabowska, Magdalena M; DeGraff, David J; Yu, Xiuping et al. (2014) Mouse models of prostate cancer: picking the best model for the question. Cancer Metastasis Rev 33:377-97
Grieb, Brian C; Gramling, Mark W; Arrate, Maria Pia et al. (2014) Oncogenic protein MTBP interacts with MYC to promote tumorigenesis. Cancer Res 74:3591-602
Raman, Dayanidhi; Sai, Jiqing; Hawkins, Oriana et al. (2014) Adaptor protein2 (AP2) orchestrates CXCR2-mediated cell migration. Traffic 15:451-69
Powell, Anne E; Vlacich, Gregory; Zhao, Zhen-Yang et al. (2014) Inducible loss of one Apc allele in Lrig1-expressing progenitor cells results in multiple distal colonic tumors with features of familial adenomatous polyposis. Am J Physiol Gastrointest Liver Physiol 307:G16-23

Showing the most recent 10 out of 31 publications