This multi-disciplinary program will focus on training pre-doctoral students and post-doctoral fellows in Cancer Biology so that they can effectively decipher important research questions associated with human Cancer. To accomplish this objective, we have integrated the already established and successful programs in Signal Transduction and Mechanisms of Cancer Cell Survival, Cancer Progression and Metastasis, Tumor Microenvironment, and Oxidative Stress and DNA Damage with clinical exposure into one cohesive program. The trainees will receive both didactic and non-didactic instruction, laboratory-based basic science research training in cancer research and cutting edge clinical applications, and career development as independent cancer biologists. The students and fellows will receive ample training to articulate their ideas and communicate them effectively, evaluate biomedical research, and mentor others in scientific excellence, and thus function as important members of the scientific community. This program assembles a cohesive group of basic science and clinical faculty from 6 different departments at the College of Medicine. In the past 10 years our program faculty has trained 90 doctoral students and over 100 post-doctoral fellows, and has the experience and the interdisciplinary focus to guide this group of trainees to function in research teams pursuing multidisciplinary investigations. We mentor our trainees to be proficient at utilizing hypothesis-driven approaches as well as discovery-oriented research design to address key problems. All trainees are required to complete the foundation courses in graduate level Genetics, Biochemistry, Immunology, Pharmacology, Physiology, Cell Biology, Molecular Biology, Biostatistics, Ethics, and the Cancer Biology and Therapy course, which emphasizes cancer in the context of human disease. Training also involves participation in the Markey Cancer Center Seminar Series and a Cancer Biology Journal Club. A unique feature of this program is the interdisciplinary training opportunity that will emphasize bench to bedside (and vice versa) research topics to provide a bridge between the fundamental biology of cancer and clinical cancer. The ultimate objective is to develop a cadre of future scientists who can become leaders in integrative team approaches to understand the complex issue of cancer as it relates to potential prevention and treatment strategies. Moreover, to help ensure our commitment to the clinical-translation of basic science discoveries, Markey Cancer Center Associate Director Vivek Rangnekar, Ph.D. and Director Mark Evers, M.D., will be PIs for this team-based training program. The University of Kentucky places a significant emphasis on training of minority students, post-doctoral researchers and physicians, and therefore this program will ensure the inclusion of individuals with under-represented racial and ethnic background to better serve our diverse society. Accordingly, this training program will train the next generation of cancer researchers to better understand and treat cancers using an interdisciplinary team approach.

Public Health Relevance

This multidisciplinary training program represents a team-approach involving multiple PIs to mentor pre- doctoral students and post-doctoral fellows in fundamental aspects of cancer biology, translational science of cancer and therapeutics, and prepare them as independent investigators who can become fully integrated in multidisciplinary cancer care teams.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Institutional National Research Service Award (T32)
Project #
3T32CA165990-03S1
Application #
9042750
Study Section
Subcommittee G - Education (NCI)
Program Officer
Lin, Alison J
Project Start
2013-04-01
Project End
2016-03-31
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
3
Fiscal Year
2015
Total Cost
$31,764
Indirect Cost
$2,198
Name
University of Kentucky
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
939017877
City
Lexington
State
KY
Country
United States
Zip Code
40506
Rea, Matthew; Gripshover, Tyler; Fondufe-Mittendorf, Yvonne (2018) Selective inhibition of CTCF binding by iAs directs TET-mediated reprogramming of 5-hydroxymethylation patterns in iAs-transformed cells. Toxicol Appl Pharmacol 338:124-133
McKenna, Mary K; Noothi, Sunil K; Alhakeem, Sara S et al. (2018) Novel role of prostate apoptosis response-4 tumor suppressor in B-cell chronic lymphocytic leukemia. Blood 131:2943-2954
Jarrett, Stuart G; Carter, Katharine M; Bautista, Robert-Marlo et al. (2018) Sirtuin 1-mediated deacetylation of XPA DNA repair protein enhances its interaction with ATR protein and promotes cAMP-induced DNA repair of UV damage. J Biol Chem 293:19025-19037
Bruntz, Ronald C; Lane, Andrew N; Higashi, Richard M et al. (2017) Exploring cancer metabolism using stable isotope-resolved metabolomics (SIRM). J Biol Chem 292:11601-11609
Wolf Horrell, Erin M; Jarrett, Stuart G; Carter, Katharine M et al. (2017) Divergence of cAMP signalling pathways mediating augmented nucleotide excision repair and pigment induction in melanocytes. Exp Dermatol 26:577-584
Eckstein, Meredith; Rea, Matthew; Fondufe-Mittendorf, Yvonne N (2017) Microarray dataset of transient and permanent DNA methylation changes in HeLa cells undergoing inorganic arsenic-mediated epithelial-to-mesenchymal transition. Data Brief 13:6-9
Carpenter, Brittany L; Liu, Jinpeng; Qi, Lei et al. (2017) Integrin ?6?4 Upregulates Amphiregulin and Epiregulin through Base Excision Repair-Mediated DNA Demethylation and Promotes Genome-wide DNA Hypomethylation. Sci Rep 7:6174
Mitov, Mihail I; Harris, Jennifer W; Alstott, Michael C et al. (2017) Temperature induces significant changes in both glycolytic reserve and mitochondrial spare respiratory capacity in colorectal cancer cell lines. Exp Cell Res 354:112-121
Rea, Matthew; Eckstein, Meredith; Eleazer, Rebekah et al. (2017) Genome-wide DNA methylation reprogramming in response to inorganic arsenic links inhibition of CTCF binding, DNMT expression and cellular transformation. Sci Rep 7:41474
Burikhanov, Ravshan; Hebbar, Nikhil; Noothi, Sunil K et al. (2017) Chloroquine-Inducible Par-4 Secretion Is Essential for Tumor Cell Apoptosis and Inhibition of Metastasis. Cell Rep 18:508-519

Showing the most recent 10 out of 33 publications