This institutional training program combines a broadly based curricular training in Neuroscience with research training focused upon neuroscience oriented approaches to understanding addiction. Our program provides this training in the context of the interdepartmental Neuroscience Program of our Graduate School, related graduate programs in the basic health sciences and a research environment which is characterized by a critical mass of NIDA-supported investigators who have a productive history of collaborative research. Program: The training program capitalizes on 4 general arenas of trainer-trainee interaction: curriculum, research training, multiple venues for discussion of research (seminars, symposium, retreat, travel to scientific meetings) and structured programs that promote trainee planning for success. The curriculum is based on core courses in the graduate program in Neuroscience. The curriculum emphasizes cellular and molecular, systems, and behavioral components of neuroscience, and includes a course in Neuroscience Principles of Drug Abuse. The research encompassed by trainers involves cellular neuroscience integrated with molecular and/or behavioral approaches to problems associated with drug abuse. Training in research is under the direction of 15 faculty members, all of whom are members of the graduate faculty in Neuroscience. Trainees: The proposed program provides training for 6 predoctoral and 3 postdoctoral trainees. Predoctoral trainees pursuing a Ph.D. in Neuroscience, or students in the departmentally-based graduate programs of Pharmacology, Pharmaceutics, or Comparative and Molecular Biosciences who elect to minor in neuroscience will be eligible for training under the auspices of the proposed training program. Postdoctoral training by its nature is more customized and varied according to trainer and trainee. The principle to be followed in the proposed program is that the research conducted should include collaborative efforts between laboratories so as to insure an experimental neuroscience perspective. Relevance: Understanding the neurobiological processes underlying conditions that lead to use of addictive drugs (pain and reward systems) as well as plasticity in neurotransmission that occurs with repeated substance use are fundamental to developing new therapeutic approaches that disrupt addiction and do not promote addiction.

Public Health Relevance

Understanding the neurobiological processes underlying conditions that lead to use of addictive drugs (pain and reward systems) as well as plasticity in neurotransmission that occurs with repeated substance use are fundamental to developing new therapeutic approaches that disrupt addiction and do not promote addiction. This training program fosters the development of future investigators in these areas through courses, research training, and multiple venues for the discussion of ideas at the cutting-edge of the field

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Institutional National Research Service Award (T32)
Project #
5T32DA007234-27
Application #
8462947
Study Section
Special Emphasis Panel (ZDA1-EXL-T (13))
Program Officer
Babecki, Beth
Project Start
1991-09-30
Project End
2017-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
27
Fiscal Year
2013
Total Cost
$412,729
Indirect Cost
$30,378
Name
University of Minnesota Twin Cities
Department
Neurosciences
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Steiner, Adam P; Redish, A David (2014) Behavioral and neurophysiological correlates of regret in rat decision-making on a neuroeconomic task. Nat Neurosci 17:995-1002
Liao, Dezhi; Miller, Eric C; Teravskis, Peter J (2014) Tau acts as a mediator for Alzheimer's disease-related synaptic deficits. Eur J Neurosci 39:1202-13
Wydeven, Nicole; Posokhova, Ekaterina; Xia, Zhilian et al. (2014) RGS6, but not RGS4, is the dominant regulator of G protein signaling (RGS) modulator of the parasympathetic regulation of mouse heart rate. J Biol Chem 289:2440-9
Miller, Eric C; Teravskis, Peter J; Dummer, Benjamin W et al. (2014) Tau phosphorylation and tau mislocalization mediate soluble A? oligomer-induced AMPA glutamate receptor signaling deficits. Eur J Neurosci 39:1214-24
Khasabova, Iryna A; Yao, Xu; Paz, Justin et al. (2014) JZL184 is anti-hyperalgesic in a murine model of cisplatin-induced peripheral neuropathy. Pharmacol Res 90:67-75
Staffend, Nancy A; Hedges, Valerie L; Chemel, Benjamin R et al. (2014) Cell-type specific increases in female hamster nucleus accumbens spine density following female sexual experience. Brain Struct Funct 219:2071-81
Meitzen, John; Perry, Adam N; Westenbroek, Christel et al. (2013) Enhanced striatal *1-adrenergic receptor expression following hormone loss in adulthood is programmed by both early sexual differentiation and puberty: a study of humans and rats. Endocrinology 154:1820-31
Wikenheiser, Andrew M; Stephens, David W; Redish, A David (2013) Subjective costs drive overly patient foraging strategies in rats on an intertemporal foraging task. Proc Natl Acad Sci U S A 110:8308-13
Hargus, Nicholas J; Thayer, Stanley A (2013) Human immunodeficiency virus-1 Tat protein increases the number of inhibitory synapses between hippocampal neurons in culture. J Neurosci 33:17908-20
Meitzen, John; Luoma, Jessie I; Boulware, Marissa I et al. (2013) Palmitoylation of estrogen receptors is essential for neuronal membrane signaling. Endocrinology 154:4293-304

Showing the most recent 10 out of 88 publications