This proposal requests support to continue a successful predoctoral and postdoctoral training program designed to provide training in molecular and cellular aspects of drug abuse research. The University of Washington School of Medicine has strong research programs studying molecular aspects of drug receptor signaling mechanisms in several departments, and this training program has dramatically facilitated the coordination of training and collaboration of research effort among the drug abuse researchers at this institution. We expect that the continued application of increasingly sophisticated biochemical and physiological methods will provide important advances in our understanding of the mechanisms by which specific drugs of abuse act. It is the intent of this program to identify and support four predoctoral students and three postdoctoral fellows interested in studying molecular and cellular mechanisms of drug action of specific abused drugs. Beyond the directly beneficial effects on the careers of the trainees, one of the most significant successes of the previously funded program has been its catalytic effect on the research environment at this institution. A funded Drug Abuse Research Training Program will continue to serve as an important catalyst to focus research effort at this institution on the basic neurobiology of a significant health issue.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Institutional National Research Service Award (T32)
Project #
5T32DA007278-13
Application #
7093057
Study Section
Special Emphasis Panel (ZDA1-EXL-T (11))
Program Officer
Babecki, Beth
Project Start
1993-08-01
Project End
2009-06-30
Budget Start
2006-07-01
Budget End
2007-06-30
Support Year
13
Fiscal Year
2006
Total Cost
$249,487
Indirect Cost
Name
University of Washington
Department
Pharmacology
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Yager, Lindsay M; Garcia, Aaron F; Donckels, Elizabeth A et al. (2018) Chemogenetic inhibition of direct pathway striatal neurons normalizes pathological, cue-induced reinstatement of drug-seeking in rats. Addict Biol :
Abraham, Antony D; Fontaine, Harrison M; Song, Allisa J et al. (2018) ?-Opioid Receptor Activation in Dopamine Neurons Disrupts Behavioral Inhibition. Neuropsychopharmacology 43:362-372
Abraham, Antony D; Schattauer, Selena S; Reichard, Kathryn L et al. (2018) Estrogen Regulation of GRK2 Inactivates Kappa Opioid Receptor Signaling Mediating Analgesia, But Not Aversion. J Neurosci 38:8031-8043
Chen, Jane Y; Campos, Carlos A; Jarvie, Brooke C et al. (2018) Parabrachial CGRP Neurons Establish and Sustain Aversive Taste Memories. Neuron 100:891-899.e5
Chung, Amanda S; Miller, Samara M; Sun, Yanjun et al. (2017) Sexual congruency in the connectome and translatome of VTA dopamine neurons. Sci Rep 7:11120
Schattauer, Selena S; Kuhar, Jamie R; Song, Allisa et al. (2017) Nalfurafine is a G-protein biased agonist having significantly greater bias at the human than rodent form of the kappa opioid receptor. Cell Signal 32:59-65
Sanford, Christina A; Soden, Marta E; Baird, Madison A et al. (2017) A Central Amygdala CRF Circuit Facilitates Learning about Weak Threats. Neuron 93:164-178
Brodsky, Matthew; Lesiak, Adam J; Croicu, Alex et al. (2017) 5-HT6 receptor blockade regulates primary cilia morphology in striatal neurons. Brain Res 1660:10-19
Brodsky, Matthew; Gibson, Alec W; Smirnov, Denis et al. (2016) Striatal 5-HT6 Receptors Regulate Cocaine Reinforcement in a Pathway-Selective Manner. Neuropsychopharmacology 41:2377-87
Lesiak, Adam J; Neumaier, John F (2016) RiboTag: Not Lost in Translation. Neuropsychopharmacology 41:374-6

Showing the most recent 10 out of 71 publications