The objective of the Basic Science Training Program in Drug Abuse (DA) at UT Southwestern is the training of predoctoral, postdoctoral, and short-term research fellows in a broad range of biological research methods relevant to drug abuse and addiction. The DA Training Program fills a critical need by increasing the number of high-quality basic science researchers in the field of drug abuse, and conversely exposing clinical researchers to basic research in addiction. There are numerous strengths of this historically successful Training Program. The DA Training Faculty Members have exemplary research and funding records in addiction neurobiology and related biomedical fields of study. The breadth and depth of our potential trainees is also highly notable, as is the explosive interest specifically in neuroscience research at UT Southwestern, an institution traditionally known for world-class molecular and cellular biology. UT Southwestern itself provides an outstanding environment in which to conduct basic, interdisciplinary, and frequently cutting-edge biomedical research. For example, our Training Program provides a platform on which researchers in diverse academic divisions (Psychiatry, Neuroscience, Molecular Biology, Internal Medicine, Development Biology, Pharmacology, Neurology) can work closely together to integrate their findings to achieve a more holistic and clinically relevant understanding of the addicted phenotype. UT Southwestern also offers a preexisting integration of basic science research with nationally recognized clinical programs in addiction research and treatment, thus providing the unique opportunity for preclinical investigators to couple their work directly to clinical trials. A final strength is the demonstrated commitment of our Core DA Training Faculty to encouraging researchers outside the addiction field as well as the next generation of researchers to turn their considerable talents toward the advancement of our knowledge of the addicted brain, thus forging novel avenues for treatment of drug abuse. UT Southwestern has the resources and capabilities to build significantly on the already notable 15-year history of this DA Training Program. Renewal of this Program will play an essential role in ensuring continued exceptional predoctoral, postdoctoral, and short-term research training in addiction neurobiology at our institution. For this competitive renewal, we began with our previous cohesive program of training, and updated it significantly to address foremost the evolving needs of Trainees, but also those of the mentors and program administrators, as described in this application. Throughout these updates, we have been cognizant to maintain the key aspects of the DA Training Program that have thus far been so successful in training fellows in drug abuse research: exceptionally high-quality mentors, cutting-edge research, translational opportunities, and a supportive atmosphere. As such, we expect the DA Training Program will continue to serve as a seed grant that results in increased recruitment of fellows to our laboratories;this opens the door for fellows to apply for individual grants from federal and private sources, which will in turn further enrich our Training Program. Most importantly, the continued success of the DA Training Program will serve to further enhance the profile of addiction research at UT Southwestern, thus drawing even more of the best and brightest scientific minds to the study of addiction.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Special Emphasis Panel (ZDA1-EXL-T (04))
Program Officer
Babecki, Beth
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Sw Medical Center Dallas
Schools of Medicine
United States
Zip Code
Whoolery, Cody W; Walker, Angela K; Richardson, Devon R et al. (2017) Whole-Body Exposure to 28Si-Radiation Dose-Dependently Disrupts Dentate Gyrus Neurogenesis and Proliferation in the Short Term and New Neuron Survival and Contextual Fear Conditioning in the Long Term. Radiat Res 188:532-551
Nugent, Alexandria L; Anderson, Ethan M; Larson, Erin B et al. (2017) Incubation of cue-induced reinstatement of cocaine, but not sucrose, seeking in C57BL/6J mice. Pharmacol Biochem Behav 159:12-17
Anderson, Ethan M; Self, David W (2017) It's only a matter of time: longevity of cocaine-induced changes in dendritic spine density in the nucleus accumbens. Curr Opin Behav Sci 13:117-123
Rajkovich, Kacey E; Loerwald, Kristofer W; Hale, Carly F et al. (2017) Experience-Dependent and Differential Regulation of Local and Long-Range Excitatory Neocortical Circuits by Postsynaptic Mef2c. Neuron 93:48-56
Anderson, Ethan M; Wissman, Anne Marie; Chemplanikal, Joyce et al. (2017) BDNF-TrkB controls cocaine-induced dendritic spines in rodent nucleus accumbens dissociated from increases in addictive behaviors. Proc Natl Acad Sci U S A 114:9469-9474
Pinzón, Jorge H; Reed, Addison R; Shalaby, Nevine A et al. (2017) Alcohol-Induced Behaviors Require a Subset of Drosophila JmjC-Domain Histone Demethylases in the Nervous System. Alcohol Clin Exp Res 41:2015-2024
Cansler, Hillary L; Maksimova, Marina A; Meeks, Julian P (2017) Experience-Dependent Plasticity in Accessory Olfactory Bulb Interneurons following Male-Male Social Interaction. J Neurosci 37:7240-7252
Gonzalez, D A; Jia, T; Pinzón, J H et al. (2017) The Arf6 activator Efa6/PSD3 confers regional specificity and modulates ethanol consumption in Drosophila and humans. Mol Psychiatry :
Bulin, Sarah E; Mendoza, Matthew L; Richardson, Devon R et al. (2017) Dentate gyrus neurogenesis ablation via cranial irradiation enhances morphine self-administration and locomotor sensitization. Addict Biol :
Jia, Tianye; Macare, Christine; Desrivières, Sylvane et al. (2016) Neural basis of reward anticipation and its genetic determinants. Proc Natl Acad Sci U S A 113:3879-84

Showing the most recent 10 out of 76 publications