This is a competing continuation application for the University of Utah's Research Training in Hematology Program, a program established in 1943 by Dr. M.M. Wintrobe. Twenty-four faculty members serve as research preceptors for trainees, and the faculty consists of both physician-scientists and basic scientists from the Departments of Medicine, Biochemistry, Chemistry, Human Genetics, Oncological Sciences, Pathology, and Pediatrics. Research groups participating in the Training Program include the Molecular Regulation of Metal and Heme Metabolism and the Hematopoiesis-Cell Differentiation Group. The special attribute of this multidisciplinary training program is the faculty with which trainees can interact, with both basic and clinical investigators. The unifying element is the common objective to train post-doctoral fellows and graduate students who can conduct studies at the cutting edge of hematologic research. In our program, physician-trainees interact with basic science post-doctoral trainees and graduate students every day, and this interaction promotes an expanded view of hematologic research for both groups of post-doctoral fellows and the graduate students working in the laboratories of the training faculty. A plan is presented to expand the pre-doctoral Training Program by incorporating a newly created University of Utah Med-into-Grad Program. This program is designed to transform basic science graduate education by integrating intensive, clinically-relevant education into pre-doctoral training. The program will permit graduate students to obtain dual degrees, a department-specific Ph.D. degree and a medical school-wide Master of Science in clinical investigation. The application requests support for six pre-doctoral trainees and six post-doctoral fellows (a mixture of physician-trainees and Ph.D. post-doctoral trainees).

Public Health Relevance

Hematology has led medical sciences into an era of enormous advances in the cellular and molecular basis of many diseases. The leading role of hematology is explained, in part, by the ease of access to blood and bone marrow cells. An expanded core of investigators trained in molecular biology and cell physiology is required to exploit new opportunities afforded by advances in technology. The Hematology Research Training Program at the University of Utah is designed to train these investigators.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Diabetes, Endocrinology and Metabolic Diseases B Subcommittee (DDK)
Program Officer
Bishop, Terry Rogers
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Utah
Internal Medicine/Medicine
Schools of Medicine
Salt Lake City
United States
Zip Code
Pioli, Peter D; Whiteside, Sarah K; Weis, Janis J et al. (2016) Snai2 and Snai3 transcriptionally regulate cellular fitness and functionality of T cell lineages through distinct gene programs. Immunobiology 221:618-33
Olson, Kristofor A; Schell, John C; Rutter, Jared (2016) Pyruvate and Metabolic Flexibility: Illuminating a Path Toward Selective Cancer Therapies. Trends Biochem Sci 41:219-30
Lewis, Adam J; Dhakal, Bijaya K; Liu, Ting et al. (2016) Histone Deacetylase 6 Regulates Bladder Architecture and Host Susceptibility to Uropathogenic Escherichia coli. Pathogens 5:
Andrade, Daniel; Velinder, Matthew; Singer, Jason et al. (2016) SUMOylation Regulates Growth Factor Independence 1 in Transcriptional Control and Hematopoiesis. Mol Cell Biol 36:1438-50
Melber, Andrew; Na, Un; Vashisht, Ajay et al. (2016) Role of Nfu1 and Bol3 in iron-sulfur cluster transfer to mitochondrial clients. Elife 5:
Yarrington, Robert M; Goodrum, Jenna M; Stillman, David J (2016) Nucleosomes Are Essential for Proper Regulation of a Multigated Promoter in Saccharomyces cerevisiae. Genetics 202:551-63
Green, Yangsook Song; Kwon, Sunjong; Mimoto, Mizuho S et al. (2016) Tril targets Smad7 for degradation to allow hematopoietic specification in Xenopus embryos. Development 143:4016-4026
Green, Yangsook Song; Kwon, Sunjong; Christian, Jan L (2016) Expression pattern of bcar3, a downstream target of Gata2, and its binding partner, bcar1, during Xenopus development. Gene Expr Patterns 20:55-62
Yu, Yaxin; Yarrington, Robert M; Chuong, Edward B et al. (2016) Disruption of promoter memory by synthesis of a long noncoding RNA. Proc Natl Acad Sci U S A 113:9575-80
Mimoto, Mizuho S; Kwon, Sunjong; Green, Yangsook Song et al. (2015) GATA2 regulates Wnt signaling to promote primitive red blood cell fate. Dev Biol 407:1-11

Showing the most recent 10 out of 132 publications