Established in 1975, the Diabetes and Related Metabolic Diseases Training Grant at Washington University has a track record of training biomedical scientists who have made important contributions. The goal of this Training Program is to identify individuals of diverse backgrounds who are committed to a career in biomedical/clinical research, and provide them with a mentored postdoctoral research experience for a minimum of two years that will establish a foundation for an independent research program capable of translational research in diabetes and related metabolic diseases. In recognition of the growing impact of diabetes and related disorders on Americans as well as the shrinking pool of young investigators trained to pursue clinically relevant diabetes reserch, this training program has been re-structured to satisfy the need for diabetes researchers committed to translating findings at the bench to new therapies in the clinic with the potential to improve diabetes care. Changes include focusing the scientific efforts of the Program Faculty, emphasing translational research training (including training with a clinical context to PhD scientists in addition to MD and MD/PhD scientists), instituting a regular research symposium, establishing a formal mentoring system that includes a Career Development Committee for each fellow, expanding didactic training, instituting a formal evaluation system for the program, instituting formal training in ethics, developing targeted recruitment strategies to improve our yield of promising physician scientists, and developing a minority recruitment strategy with the assistance of the Associate Dean and Director of the Office of Diversity. This Training Program combines a talented and dedicated faculty, a substantial pool of promising trainees, and a culture of interdisciplinary scientific diversity and collaboration creating an ideal environment for training in Diabetes and Related Metabolic Diseases.

Public Health Relevance

This application is directly relevant to public health and the mission of the NIDDK. Diabetes and related metabolic diseases extract a terrible burden on the American public despite staggering health care expenditures for these problems. Training biomedical scientists to perform paradigm-shifting translational research has the potential to decrease this burden through development of novel therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Institutional National Research Service Award (T32)
Project #
5T32DK007120-39
Application #
8508918
Study Section
Diabetes, Endocrinology and Metabolic Diseases B Subcommittee (DDK)
Program Officer
Castle, Arthur
Project Start
1975-07-01
Project End
2015-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
39
Fiscal Year
2013
Total Cost
$419,338
Indirect Cost
$34,270
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Kim, Ki-Wook; Williams, Jesse W; Wang, Ya-Ting et al. (2016) MHC II+ resident peritoneal and pleural macrophages rely on IRF4 for development from circulating monocytes. J Exp Med 213:1951-9
McCommis, Kyle S; Hodges, Wesley T; Brunt, Elizabeth M et al. (2016) Targeting the Mitochondrial Pyruvate Carrier Attenuates Fibrosis in a Mouse Model of Nonalcoholic Steatohepatitis. Hepatology :
McCommis, Kyle S; Hodges, Wesley T; Bricker, Daniel K et al. (2016) An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion. Mol Metab 5:602-14
Mittendorfer, Bettina; Yoshino, Mihoko; Patterson, Bruce W et al. (2016) VLDL Triglyceride Kinetics in Lean, Overweight, and Obese Men and Women. J Clin Endocrinol Metab 101:4151-4160
Lam, Wing Y; Becker, Amy M; Kennerly, Krista M et al. (2016) Mitochondrial Pyruvate Import Promotes Long-Term Survival of Antibody-Secreting Plasma Cells. Immunity 45:60-73
Herrick, Cynthia J; Yount, Byron W; Eyler, Amy A (2016) Implications of supermarket access, neighbourhood walkability and poverty rates for diabetes risk in an employee population. Public Health Nutr 19:2040-8
Bouhairie, Victoria Enchia; Goldberg, Anne Carol (2015) Familial hypercholesterolemia. Cardiol Clin 33:169-79
Best, Conor; Struthers, Heidi; Laciny, Erin et al. (2015) Sitagliptin Reduces Inflammation and Chronic Immune Cell Activation in HIV+ Adults With Impaired Glucose Tolerance. J Clin Endocrinol Metab 100:2621-9
Oh, Jisu; Riek, Amy E; Darwech, Isra et al. (2015) Deletion of macrophage Vitamin D receptor promotes insulin resistance and monocyte cholesterol transport to accelerate atherosclerosis in mice. Cell Rep 10:1872-86
McCommis, Kyle S; Chen, Zhouji; Fu, Xiaorong et al. (2015) Loss of Mitochondrial Pyruvate Carrier 2 in the Liver Leads to Defects in Gluconeogenesis and Compensation via Pyruvate-Alanine Cycling. Cell Metab 22:682-94

Showing the most recent 10 out of 100 publications