Established in 1975, the Diabetes and Related Metabolic Diseases Training Grant at Washington University has a track record of training biomedical scientists who have made important contributions. The goal of this Training Program is to identify individuals of diverse backgrounds who are committed to a career in biomedical/clinical research, and provide them with a mentored postdoctoral research experience for a minimum of two years that will establish a foundation for an independent research program capable of translational research in diabetes and related metabolic diseases. In recognition of the growing impact of diabetes and related disorders on Americans as well as the shrinking pool of young investigators trained to pursue clinically relevant diabetes reserch, this training program has been re-structured to satisfy the need for diabetes researchers committed to translating findings at the bench to new therapies in the clinic with the potential to improve diabetes care. Changes include focusing the scientific efforts of the Program Faculty, emphasing translational research training (including training with a clinical context to PhD scientists in addition to MD and MD/PhD scientists), instituting a regular research symposium, establishing a formal mentoring system that includes a Career Development Committee for each fellow, expanding didactic training, instituting a formal evaluation system for the program, instituting formal training in ethics, developing targeted recruitment strategies to improve our yield of promising physician scientists, and developing a minority recruitment strategy with the assistance of the Associate Dean and Director of the Office of Diversity. This Training Program combines a talented and dedicated faculty, a substantial pool of promising trainees, and a culture of interdisciplinary scientific diversity and collaboration creating an ideal environment for training in Diabetes and Related Metabolic Diseases.

Public Health Relevance

This application is directly relevant to public health and the mission of the NIDDK. Diabetes and related metabolic diseases extract a terrible burden on the American public despite staggering health care expenditures for these problems. Training biomedical scientists to perform paradigm-shifting translational research has the potential to decrease this burden through development of novel therapies.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Diabetes, Endocrinology and Metabolic Diseases B Subcommittee (DDK)
Program Officer
Castle, Arthur
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Internal Medicine/Medicine
Schools of Medicine
Saint Louis
United States
Zip Code
Lodhi, Irfan J; Semenkovich, Clay F (2014) Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab 19:380-92
Seedorf, Henning; Griffin, Nicholas W; Ridaura, Vanessa K et al. (2014) Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 159:253-66
Herrick, Cynthia; Litvin, Marina; Goldberg, Anne Carol (2014) Lipid lowering in liver and chronic kidney disease. Best Pract Res Clin Endocrinol Metab 28:339-52
Figlewicz, D P; Hill, S R; Jay, J L et al. (2014) Effect of recurrent yohimbine on immediate and post-hoc behaviors, stress hormones, and energy homeostatic parameters. Physiol Behav 129:186-93
Jensen-Urstad, Anne P L; Song, Haowei; Lodhi, Irfan J et al. (2013) Nutrient-dependent phosphorylation channels lipid synthesis to regulate PPAR*. J Lipid Res 54:1848-59
Spears, Larry D; Razani, Babak; Semenkovich, Clay F (2013) Interleukins and atherosclerosis: a dysfunctional family grows. Cell Metab 18:614-6
Goodwin, Scott R; Reeds, Dominic N; Royal, Michael et al. (2013) Dipeptidyl peptidase IV inhibition does not adversely affect immune or virological status in HIV infected men and women: a pilot safety study. J Clin Endocrinol Metab 98:743-51
Cryer, Philip E; Axelrod, Lloyd; Grossman, Ashley B et al. (2013) Diagnostic accuracy of an "amended" insulin-glucose ratio for the biochemical diagnosis of insulinomas. Ann Intern Med 158:500-1
Funai, Katsuhiko; Song, Haowei; Yin, Li et al. (2013) Muscle lipogenesis balances insulin sensitivity and strength through calcium signaling. J Clin Invest 123:1229-40
Cryer, Philip E (2012) Minireview: Glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes. Endocrinology 153:1039-48

Showing the most recent 10 out of 85 publications