The major components of this program include comprehensive research training under supervision of committed mentors with diverse scientific expertise, incorporation of multidisciplinary approaches to biomedical investigation, well-equipped research environment with aces to state of the art technologies, protection from distracting responsibilities, and formal didactic instruction and enrichment activities. (A) Research Areas and Disciplines: A major strength of this training program is its multidisciplinary nature. This provides ample opportunities of training across disciplines, permitting novel approaches to be applied to complex biomedical problems. Training is offered in cell and molecular biology, structural biology, photobiology, stem cell biology, genetics, genomics, metabolomics and proteomics, autoimmunity and transplantation biology, and in translational research. These disciplines are applied to nine research themes that are relevant to diseases such as diabetes, hypertension, nephritis, vasculitis and polycystic kidney disease. For those trainees opting for clinical research, enrollment in formal instructional courses in the relevant quantitative sciences is mandated. All research trainees are required to complete a revised three- component program in the responsible conduct of research. (B) Level of Training, Background and Numbers of Trainees. In this renewal, we request eight postdoctoral positions, offered to MDs, MD-PhDs or PhDs on an annual basis. In addition, we request support for a one new predoctoral position each year to be offered to an under-represented minority student completing an undergraduate degree or enrolled in graduate or medical school. We also request tuition support for formal instructional courses in the basic sciences required of MDs with no previous training in bench research but who are committed to a basic research track. (C) Training Facilities. Research training is conducted in the laboratories of the research mentors, a collaborative group of established investigators with strong training records and scientific achievements in diverse scientific disciplines. The laboratories collectively occupy 277,700 sq. ft of dedicated research space located mainly at the Massachusetts General Hospital.

Public Health Relevance

The overall objective of the Nephrology Training Program at the Massachusetts General Hospital is to provide our trainees with a strong foundation in basic and translational research, using state of the art technologies to address complex biomedical problems pertaining to the renovascular system. Initially focused on providing experience in molecular and cell biology, the scope of the program is being expanded to also include training in new emerging fields and across scientific disciplines.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Institutional National Research Service Award (T32)
Project #
5T32DK007540-27
Application #
8289653
Study Section
Diabetes, Endocrinology and Metabolic Diseases B Subcommittee (DDK)
Program Officer
Rys-Sikora, Krystyna E
Project Start
1986-07-01
Project End
2016-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
27
Fiscal Year
2012
Total Cost
$248,956
Indirect Cost
$32,891
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Rui, Xianliang; Mehrbod, Mehrdad; Van Agthoven, Johannes F et al. (2014) The ?-subunit regulates stability of the metal ion at the ligand-associated metal ion-binding site in ?3 integrins. J Biol Chem 289:23256-63
Palmyre, Aurélien; Lee, Jeongeun; Ryklin, Gennadiy et al. (2014) Collective epithelial migration drives kidney repair after acute injury. PLoS One 9:e101304
Mahalingam, Bhuvaneshwari; Van Agthoven, Johannes F; Xiong, Jian-Ping et al. (2014) Atomic basis for the species-specific inhibition of ?V integrins by monoclonal antibody 17E6 is revealed by the crystal structure of ?V?3 ectodomain-17E6 Fab complex. J Biol Chem 289:13801-9
Lan, Yuk Yuen; Londoño, Diana; Bouley, Richard et al. (2014) Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Rep 9:180-92
Core, Amanda B; Canali, Susanna; Babitt, Jodie L (2014) Hemojuvelin and bone morphogenetic protein (BMP) signaling in iron homeostasis. Front Pharmacol 5:104
Zumbrennen-Bullough, Kimberly B; Wu, Qifang; Core, Amanda B et al. (2014) MicroRNA-130a is up-regulated in mouse liver by iron deficiency and targets the bone morphogenetic protein (BMP) receptor ALK2 to attenuate BMP signaling and hepcidin transcription. J Biol Chem 289:23796-808
Vaine, Christine A; Soberman, Roy J (2014) The CD200-CD200R1 inhibitory signaling pathway: immune regulation and host-pathogen interactions. Adv Immunol 121:191-211
Zwang, Nicholas A; Turka, Laurence A (2014) Transplantation immunology in 2013: New approaches to diagnosis of rejection. Nat Rev Nephrol 10:72-4
Adair, Brian D; Altintas, Mehmet M; Möller, Clemens C et al. (2014) Structure of the kidney slit diaphragm adapter protein CD2-associated protein as determined with electron microscopy. J Am Soc Nephrol 25:1465-73
Van Agthoven, Johannes F; Xiong, Jian-Ping; Alonso, José Luis et al. (2014) Structural basis for pure antagonism of integrin ?V?3 by a high-affinity form of fibronectin. Nat Struct Mol Biol 21:383-8

Showing the most recent 10 out of 41 publications