This proposal requests continued support for the Molecular Endocrinology Training Program (METP) at Vanderbilt University. Progress towards understanding and curing obesity, diabetes and many other diseases requires the training of the next generation of scientists with expertise in molecular endocrinology, the goal of this program. The METP comprises 30 faculty members in 6 basic science departments. Of this group 27 are established faculty with stable, well-funded programs and substantial training experience and 3 are new investigators;5 of these preceptors are female, 1 is a minority and 1 is disabled. This preceptor group constitutes a unusually diverse and talented group of individuals whose work covers the spectrum of molecular endocrinology. These preceptors conduct research in the general areas of: 1) signal transduction 2) the hormonal regulation of gene expression, 3) metabolic regulation and 4) beta-cell development and function. The request for a steady state level of 8 predoctoral and 4 postdoctoral trainees is justified on the basis of the number, size and quality of the research programs directed by the preceptors and the Institutional commitment to continue the same level of trainee recruitment despite the tough economic climate. All METP trainees are appointed upon the advice of an Admissions Committee after being nominated by a preceptor. Postdoctoral trainees have a Ph.D. degree. Rigorous in depth research training is the focus of both the pre and postdoctoral training programs. However, the METP also ensures that all trainees receive a broad didactic education. Predoctoral training in the METP follows that received in the Interdisciplinary Graduate Program (IGP). The IGP recruits almost all predoctoral trainees in the biomedical sciences at Vanderbilt, provides a first year core curriculum, safety training and formal evaluation and career counseling programs. This centralized recruitment has considerably increased the number and quality of predoctoral students that enter Vanderbilt. After four laboratory rotations predoctoral students choose a preceptor for their thesis project and compete for METP support. The IGP and METP have been very successful in promoting diversity and both provide ongoing training in the Responsible Conduct of Research. All METP trainees attend an annual METP Day retreat and the Vanderbilt Diabetes Center (VDC) seminar series where they meet with visiting scientists. In conjunction with the Juvenile Diabetes Research Foundation the METP has recently initiated a novel strategy to increase the recruitment of disabled individuals, specifically undergraduates with type 1 diabetes, through the creation of a VDC funded Summer Diabetes Research Program. The METP has already successfully trained 153 scientists of whom 54 have already gone onto assume academic/pharmaceutical positions with another 34 trainees still in training.

Public Health Relevance

The field of molecular endocrinology is of central relevance to multiple common human diseases, most notably obesity and diabetes. Continued progress towards understanding and curing these and many other diseases requires the training of the next generation of scientists with expertise in molecular endocrinology, which is the goal of the Molecular Endocrinology Training Program.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Diabetes, Endocrinology and Metabolic Diseases B Subcommittee (DDK)
Program Officer
Castle, Arthur
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
Schools of Medicine
United States
Zip Code
Syring, Kristen E; Bosma, Karin J; Oeser, James K et al. (2018) The Diabetes Susceptibility Gene SLC30A8 that Encodes the Zinc Transporter ZnT8 is a Pseudogene in Guinea Pigs Potentially Contributing to Low Guinea Pig Islet Zinc Content. J Mol Evol 86:613-617
Cottam, Matthew A; Itani, Hana A; Beasley 4th, Arch A et al. (2018) Links between Immunologic Memory and Metabolic Cycling. J Immunol 200:3681-3689
Mchaourab, Zenab F; Perreault, Andrea A; Venters, Bryan J (2018) ChIP-seq and ChIP-exo profiling of Pol II, H2A.Z, and H3K4me3 in human K562 cells. Sci Data 5:180030
Perreault, Andrea A; Venters, Bryan J (2018) Integrative view on how erythropoietin signaling controls transcription patterns in erythroid cells. Curr Opin Hematol 25:189-195
Dickerson, Matthew T; Bogart, Avery M; Altman, Molly K et al. (2018) Cytokine-mediated changes in K+ channel activity promotes an adaptive Ca2+ response that sustains ?-cell insulin secretion during inflammation. Sci Rep 8:1158
Bolus, W Reid; Peterson, Kristin R; Hubler, Merla J et al. (2018) Elevating adipose eosinophils in obese mice to physiologically normal levels does not rescue metabolic impairments. Mol Metab 8:86-95
Williams, Ian M; McClatchey, P Mason; Bracy, Deanna P et al. (2018) Acute Nitric Oxide Synthase Inhibition Accelerates Transendothelial Insulin Efflux In Vivo. Diabetes 67:1962-1975
Sui, Lina; Danzl, Nichole; Campbell, Sean R et al. (2018) ?-Cell Replacement in Mice Using Human Type 1 Diabetes Nuclear Transfer Embryonic Stem Cells. Diabetes 67:26-35
Venters, Bryan J (2018) Insights from resolving protein-DNA interactions at near base-pair resolution. Brief Funct Genomics 17:80-88
Gibbons, Hunter R; Shaginurova, Guzel; Kim, Laura C et al. (2018) Divergent lncRNA GATA3-AS1 Regulates GATA3 Transcription in T-Helper 2 Cells. Front Immunol 9:2512

Showing the most recent 10 out of 217 publications