This proposal requests continued support for the Molecular Endocrinology Training Program (METP) at Vanderbilt University. Progress towards understanding and curing obesity, diabetes and many other diseases requires the training of the next generation of scientists with expertise in molecular endocrinology, the goal of this program. The METP comprises 30 faculty members in 6 basic science departments. Of this group 27 are established faculty with stable, well-funded programs and substantial training experience and 3 are new investigators;5 of these preceptors are female, 1 is a minority and 1 is disabled. This preceptor group constitutes a unusually diverse and talented group of individuals whose work covers the spectrum of molecular endocrinology. These preceptors conduct research in the general areas of: 1) signal transduction 2) the hormonal regulation of gene expression, 3) metabolic regulation and 4) beta-cell development and function. The request for a steady state level of 8 predoctoral and 4 postdoctoral trainees is justified on the basis of the number, size and quality of the research programs directed by the preceptors and the Institutional commitment to continue the same level of trainee recruitment despite the tough economic climate. All METP trainees are appointed upon the advice of an Admissions Committee after being nominated by a preceptor. Postdoctoral trainees have a Ph.D. degree. Rigorous in depth research training is the focus of both the pre and postdoctoral training programs. However, the METP also ensures that all trainees receive a broad didactic education. Predoctoral training in the METP follows that received in the Interdisciplinary Graduate Program (IGP). The IGP recruits almost all predoctoral trainees in the biomedical sciences at Vanderbilt, provides a first year core curriculum, safety training and formal evaluation and career counseling programs. This centralized recruitment has considerably increased the number and quality of predoctoral students that enter Vanderbilt. After four laboratory rotations predoctoral students choose a preceptor for their thesis project and compete for METP support. The IGP and METP have been very successful in promoting diversity and both provide ongoing training in the Responsible Conduct of Research. All METP trainees attend an annual METP Day retreat and the Vanderbilt Diabetes Center (VDC) seminar series where they meet with visiting scientists. In conjunction with the Juvenile Diabetes Research Foundation the METP has recently initiated a novel strategy to increase the recruitment of disabled individuals, specifically undergraduates with type 1 diabetes, through the creation of a VDC funded Summer Diabetes Research Program. The METP has already successfully trained 153 scientists of whom 54 have already gone onto assume academic/pharmaceutical positions with another 34 trainees still in training.

Public Health Relevance

The field of molecular endocrinology is of central relevance to multiple common human diseases, most notably obesity and diabetes. Continued progress towards understanding and curing these and many other diseases requires the training of the next generation of scientists with expertise in molecular endocrinology, which is the goal of the Molecular Endocrinology Training Program.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Diabetes, Endocrinology and Metabolic Diseases B Subcommittee (DDK)
Program Officer
Castle, Arthur
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
Schools of Medicine
United States
Zip Code
Boortz, Kayla A; Syring, Kristen E; Pound, Lynley D et al. (2016) Functional Analysis of Mouse G6pc1 Mutations Using a Novel In Situ Assay for Glucose-6-Phosphatase Activity and the Effect of Mutations in Conserved Human G6PC1/G6PC2 Amino Acids on G6PC2 Protein Expression. PLoS One 11:e0162439
Henley, Kathryn D; Stanescu, Diana E; Kropp, Peter A et al. (2016) Threshold-Dependent Cooperativity of Pdx1 and Oc1 in Pancreatic Progenitors Establishes Competency for Endocrine Differentiation and β-Cell Function. Cell Rep 15:2637-50
Conrad, Elizabeth; Dai, Chunhua; Spaeth, Jason et al. (2016) The MAFB transcription factor impacts islet α-cell function in rodents and represents a unique signature of primate islet β-cells. Am J Physiol Endocrinol Metab 310:E91-E102
Williams, Ian M; Otero, Yolanda F; Bracy, Deanna P et al. (2016) Chronic Angiotensin-(1-7) Improves Insulin Sensitivity in High-Fat Fed Mice Independent of Blood Pressure. Hypertension 67:983-91
Boortz, Kayla A; Syring, Kristen E; Dai, Chunhua et al. (2016) G6PC2 Modulates Fasting Blood Glucose In Male Mice in Response to Stress. Endocrinology 157:3002-8
Dai, Chunhua; Kayton, Nora S; Shostak, Alena et al. (2016) Stress-impaired transcription factor expression and insulin secretion in transplanted human islets. J Clin Invest 126:1857-70
Anderson, Erica J P; Çakir, Isin; Carrington, Sheridan J et al. (2016) 60 YEARS OF POMC: Regulation of feeding and energy homeostasis by α-MSH. J Mol Endocrinol 56:T157-74
Boortz, Kayla A; Syring, Kristen E; Lee, Rebecca A et al. (2016) G6PC2 Modulates the Effects of Dexamethasone on Fasting Blood Glucose and Glucose Tolerance. Endocrinology 157:4133-4145
Cho, Sung Hoon; Raybuck, Ariel L; Stengel, Kristy et al. (2016) Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system. Nature 537:234-238
Syring, Kristen E; Boortz, Kayla A; Oeser, James K et al. (2016) Combined Deletion of Slc30a7 and Slc30a8 Unmasks a Critical Role for ZnT8 in Glucose-Stimulated Insulin Secretion. Endocrinology 157:4534-4541

Showing the most recent 10 out of 181 publications