We are requesting continued support for our predoctoral training program """"""""Graduate Training in Nutrition"""""""". The overall goal of our program is to train individuals to become leading investigators in the field of nutritional science who will contribute substantially to modern biomedical research. The program consists of a highly structured didactic component and a mentored research component. Support from this training grant was the key ingredient that allowed this training program in nutrition to grow from 6 PhD students and 11 faculty in 1989 to its present steady-state size of (30 PhD students and 29 faculty. For the previous grant period, we received support for 5 Ph.D. students per year (plus supplemental support for one underrepresented minority student). Because of the growth and achievements of our training program, we are requesting support for 6 PhD students per year in this renewal application. This training program is broadly focused on the nutritional sciences. The required didactic training consists of graduate level basic science and nutrition courses and all PhD students participate in the Doctoral Seminar and Reviews in Nutrition course throughout their residence in the training program. Most of the faculty have [sic] laboratory based research programs focused on nutrients or nutrition-related diseases like diabetes, obesity, or cardiovascular disease. However, our trainees are also exposed to current research in clinical nutrition and public health nutrition. The strategy of this program is to first provide structured training that is firmly grounded in the basic sciences relevant to modern biomedical research and focused on nutrition and nutrition-related questions. Next, trainees are provided with rigorous mentored research training. This research training takes place in the research groups of one of the productive and well funded independent scientists who comprise the participating training faculty. The data and narrative provided within this application demonstrate that we are training individuals committed to careers in research and teaching, with the fundamental knowledge, skills, and experience that are needed for developing successful, independent nutritional sciences research careers in the 21st Century.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Institutional National Research Service Award (T32)
Project #
5T32DK007647-25
Application #
8724469
Study Section
Diabetes, Endocrinology and Metabolic Diseases B Subcommittee (DDK)
Program Officer
Densmore, Christine L
Project Start
1990-09-15
Project End
2015-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
25
Fiscal Year
2014
Total Cost
$269,485
Indirect Cost
$13,284
Name
Columbia University (N.Y.)
Department
Genetics
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Wert, Katherine J; Mahajan, Vinit B; Zhang, Lijuan et al. (2016) Neuroretinal hypoxic signaling in a new preclinical murine model for proliferative diabetic retinopathy. Signal Transduct Target Ther 1:
Higuchi-Sanabria, Ryo; Garcia, Enrique J; Tomoiaga, Delia et al. (2016) Characterization of Fluorescent Proteins for Three- and Four-Color Live-Cell Imaging in S. cerevisiae. PLoS One 11:e0146120
Higuchi-Sanabria, Ryo; Charalel, Joseph K; Viana, Matheus P et al. (2016) Mitochondrial anchorage and fusion contribute to mitochondrial inheritance and quality control in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 27:776-87
Grijalva, Ambar; Xu, Xiaoyuan; Ferrante Jr, Anthony W (2016) Autophagy Is Dispensable for Macrophage-Mediated Lipid Homeostasis in Adipose Tissue. Diabetes 65:967-80
Chang, Hye Rim; Kim, Hae Jin; Xu, Xiaoyuan et al. (2016) Macrophage and adipocyte IGF1 maintain adipose tissue homeostasis during metabolic stresses. Obesity (Silver Spring) 24:172-83
Wert, Katherine J; Bassuk, Alexander G; Wu, Wen-Hsuan et al. (2015) CAPN5 mutation in hereditary uveitis: the R243L mutation increases calpain catalytic activity and triggers intraocular inflammation in a mouse model. Hum Mol Genet 24:4584-98
Wang, Liheng; Meece, Kana; Williams, Damian J et al. (2015) Differentiation of hypothalamic-like neurons from human pluripotent stem cells. J Clin Invest 125:796-808
Ruggles, Kelly V; Garbarino, Jeanne; Liu, Ying et al. (2014) A functional, genome-wide evaluation of liposensitive yeast identifies the ""ARE2 required for viability"" (ARV1) gene product as a major component of eukaryotic fatty acid resistance. J Biol Chem 289:4417-31
Higuchi-Sanabria, Ryo; Pernice, Wolfgang M A; Vevea, Jason D et al. (2014) Role of asymmetric cell division in lifespan control in Saccharomyces cerevisiae. FEMS Yeast Res 14:1133-46
Yamada, Mitsutoshi; Johannesson, Bjarki; Sagi, Ido et al. (2014) Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. Nature 510:533-6

Showing the most recent 10 out of 49 publications