The University of Pittsburgh seeks continued support for our multidisciplinary and innovative pre-doctoral training program in Cellular Approaches to Tissue Engineering and Regeneration (CATER). The CATER training program combines faculty and research expertise from a multitude of disciplines that combine tissue engineering with molecular and cellular approaches of therapies for human disease and regeneration. Tissue engineering and regenerative medicine are two interdisciplinary fields that are inseparably coupled, bringing together scientists from human biology, engineering, medicine and applied technologies to focus on the repair and replacement of human tissues. One of the most significant challenges in regenerative medicine is developing the next generation of experts in each of the enabling disciplines that must be trained cognizant of the crossdisciplinary challenges and approaches required to solve tissue engineering problems. To address this issue we developed the CATER pre-doctoral training program to fill the gaps that often exist in more traditional departmentally-focused research training programs. The goal of the CATER training program is to provide a solid foundation upon which to build a productive and independent career in cellular and tissue based therapy for human disease and injury. This goal is accomplished via a highly coordinated and mentored interdisciplinary training program with a combination of required and elective courses, research activities and specialized training opportunities. Our short history (first 5-years of funding support) provides evidence that we are accomplishing these training objectives. The CATER training program, combining diverse training faculty and coursework in tissue engineering and cellular and molecular biology of disease and therapy, provides a rich educational experience and more numerous training opportunities for students than obtained in more traditional or individual university departments or programs. The CATER training program provides students the training and expertise we believe is necessary to succeed in the rapidly evolving and highly interdisciplinary fields of cellular and tissue based engineering. The University of Pittsburgh pre-doctoral training program in Cellular Approaches to Tissue Engineering and Regeneration (CATER) educates and trains the next generation of scientists in regenerative medicine and tissue engineering. Our multidisciplinary training approach creates researchers that can drive regenerative medicine from the laboratory to the clinic, providing new therapies for human disease and injury.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Institutional National Research Service Award (T32)
Project #
5T32EB001026-10
Application #
8538973
Study Section
Special Emphasis Panel (ZEB1-OSR-C (J1))
Program Officer
Baird, Richard A
Project Start
2003-07-01
Project End
2014-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
10
Fiscal Year
2013
Total Cost
$274,083
Indirect Cost
$13,191
Name
University of Pittsburgh
Department
Pathology
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Nuschke, Austin; Rodrigues, Melanie; Wells, Albin W et al. (2016) Mesenchymal stem cells/multipotent stromal cells (MSCs) are glycolytic and thus glucose is a limiting factor of in vitro models of MSC starvation. Stem Cell Res Ther 7:179
Ko, Sungjin; Choi, Tae-Young; Russell, Jacquelyn O et al. (2016) Bromodomain and extraterminal (BET) proteins regulate biliary-driven liver regeneration. J Hepatol 64:316-25
Nuschke, Austin; Rodrigues, Melanie; Rivera, Jaime et al. (2016) Epidermal Growth Factor Tethered to β-Tricalcium Phosphate Bone Scaffolds via a High-Affinity Binding Peptide Enhances Survival of Human Mesenchymal Stem Cells/Multipotent Stromal Cells in an Immune-Competent Parafascial Implantation Assay in Mice. Stem Cells Transl Med :
Dearth, Christopher L; Slivka, Peter F; Stewart, Scott A et al. (2016) Inhibition of COX1/2 alters the host response and reduces ECM scaffold mediated constructive tissue remodeling in a rodent model of skeletal muscle injury. Acta Biomater 31:50-60
Hansel, Marc C; Davila, Julio C; Vosough, Massoud et al. (2016) The Use of Induced Pluripotent Stem Cells for the Study and Treatment of Liver Diseases. Curr Protoc Toxicol 67:14.13.1-14.13.27
Jamiolkowski, Megan A; Pedersen, Drake D; Wu, Wei-Tao et al. (2016) Visualization and analysis of biomaterial-centered thrombus formation within a defined crevice under flow. Biomaterials 96:72-83
Yang, Guang; Lin, Hang; Rothrauff, Benjamin B et al. (2016) Multilayered polycaprolactone/gelatin fiber-hydrogel composite for tendon tissue engineering. Acta Biomater 35:68-76
Cramer, Julie M; Thompson, Timothy; Geskin, Albert et al. (2015) Distinct human stem cell populations in small and large intestine. PLoS One 10:e0118792
Bayer, E A; Gottardi, R; Fedorchak, M V et al. (2015) The scope and sequence of growth factor delivery for vascularized bone tissue regeneration. J Control Release 219:129-40
Stahl, Elizabeth C; Brown, Bryan N (2015) Cell Therapy Strategies to Combat Immunosenescence. Organogenesis 11:159-72

Showing the most recent 10 out of 72 publications