This is an application for renewal of a highly successful, competitive and comprehensive institutional postdoctoral training program in magnetic resonance imaging (MRI) and spectroscopy (MRS) that has been in place at Vanderbilt University since 2003. The preceptor faculty comprise an experienced and expert group of research scientists engaged in the development and application of MR methods in several different important research areas and across different scales. MR methods serve not only as the single most important modality in diagnostic imaging but also provide crucial insights into biological processes and structure to address fundamental questions in biomedical research. Despite continuing advances in MR technology, there is a shortage and a critical need for appropriately trained scientists capable of fully exploiting the potential of MR techniques. We have developed a comprehensive training program in biomedical MRI and MRS designed for outstanding postdoctoral scientists from different backgrounds. Some have been exposed to imaging and MR methods before, but others have had little previous significant experience in biomedical MRI and MRS. Postdoctoral trainees from physics, chemistry, biology, engineering or medicine receive thorough and exemplary instruction in all of the cognate areas relevant to biomedical NMR in a coherent program that includes 25 Ph.D faculty and staff experienced in biomedical MRI/S and their applications. In addition, trainees pursue applications (mainly) in neuroscience, radiology, cancer and metabolic disorders and are co-mentored by collaborators from relevant clinical departments. The formal training includes an educational program, consisting of courses, seminars, and journal clubs;a practical program, consisting of faculty-led tutorials and practical training;and a research program, in which trainees are integrated into an active research program. These programs illustrate most major aspects of the applications of MR methods in humans and animals. Trainees have access to outstanding facilities including three research-dedicated human MR systems (2 at 3T and one 7T);animal MR systems at 4.7T, 7T, and 9.4T;and other imaging modalities (including ultrasound and optical imaging, microCT, microSPECT and microPET). Trainees are mentored in the ethics and methods of biomedical research, as well as in grant writing and other important career skills. The programs, personnel, and facilities at Vanderbilt provide outstanding opportunities for advanced training in biomedical NMR of the highest caliber, and will ensure that the remarkable insights into biology and disease that are possible with MRI and MRS will be realized.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Special Emphasis Panel (ZEB1-OSR-B (J1))
Program Officer
Baird, Richard A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
Schools of Medicine
United States
Zip Code
Wang, Ping; Block, Jake; Gore, John C (2015) Chemical exchange in knee cartilage assessed by R1? (1/T1?) dispersion at 3T. Magn Reson Imaging 33:38-42
Harkins, Kevin D; Horch, R Adam; Does, Mark D (2015) Simple and robust saturation-based slice selection for ultrashort echo time MRI. Magn Reson Med 73:2204-11
Faraco, Carlos C; Strother, Megan K; Dethrage, Lindsey M et al. (2015) Dual echo vessel-encoded ASL for simultaneous BOLD and CBF reactivity assessment in patients with ischemic cerebrovascular disease. Magn Reson Med 73:1579-92
Harkins, Kevin D; Does, Mark D; Grissom, William A (2014) Iterative method for predistortion of MRI gradient waveforms. IEEE Trans Med Imaging 33:1641-7
Arteaga, Daniel F; Strother, Megan K; Faraco, Carlos C et al. (2014) The vascular steal phenomenon is an incomplete contributor to negative cerebrovascular reactivity in patients with symptomatic intracranial stenosis. J Cereb Blood Flow Metab 34:1453-62
Li, Ke; Dortch, Richard D; Welch, E Brian et al. (2014) Multi-parametric MRI characterization of healthy human thigh muscles at 3.0 T - relaxation, magnetization transfer, fat/water, and diffusion tensor imaging. NMR Biomed 27:1070-84
Barry, Robert L; Smith, Seth A; Dula, Adrienne N et al. (2014) Resting state functional connectivity in the human spinal cord. Elife 3:e02812
Kovtunov, Kirill V; Truong, Milton L; Barskiy, Danila A et al. (2014) Long-lived spin States for low-field hyperpolarized gas MRI. Chemistry 20:14629-32
Truong, Milton L; Coffey, Aaron M; Shchepin, Roman V et al. (2014) Sub-second proton imaging of 13C hyperpolarized contrast agents in water. Contrast Media Mol Imaging 9:333-41
Donahue, Manus J; Dethrage, Lindsey M; Faraco, Carlos C et al. (2014) Routine clinical evaluation of cerebrovascular reserve capacity using carbogen in patients with intracranial stenosis. Stroke 45:2335-41

Showing the most recent 10 out of 45 publications