Our goal is to develop educational and research programs to train scientists and educators in an interdisciplinary training program in Neuroengineering. This program is based on more than 50 years of educational experience in Biomedical Engineering, and a collaborative research environment made possible by our unique and integrated presence in both the engineering and medical schools. The past 4 years'effort has resulted in a program that is both rigorous and comprehensive. The students get in depth educational experiences in biological sciences, neurosciences, and engineering. The rigor is derived from the core curriculum in neurosciences (biological science in general but with focus on basic and clinical neurosciences) and engineering (with focus on quantitative, computational, and emerging technologies). They also gain a requisite teaching experience. Our students have access to mentors not only in Biomedical Engineering, but other engineering programs, our Mind-Brain Institute, and various clinical departments (Neurology, Neurosurgery, Radiology). Our sponsored research base remains exceptionally strong with funding from diverse sources. We continue to draw applicants from a highly competitive national pool, and are able to maintain very high standards of selectivity. We are about to graduate the first batch of outstanding doctoral candidates. We now enter the next, maturing phase of this training program with the priority to prepare and place our students in the best and most exciting scientific careers. To expand the research opportunities, we have added two new focus areas: Neuroimaging and Clinical Neuroengineering with the inclusion of a number of highly regarded faculty. The signature aspects of our program still remain the strong presence in the medical school and the opportunity to work with an outstanding group of clinical neuroscientists to use engineering approaches to solve clinical problems. Although our program so far has a good track record of recruiting, retaining and training underrepresented minorities there are a number of institutional efforts underway to further stimulate recruiting and participation. A hallmark of our program is the NeuroEngineering Training Initiative (NETI) that has spawned several exciting local mentoring and outreach activities. Our other plans are to develop a formal placement program for our graduates, make our educational and research program a national benchmark by contributing to curriculum development and research symposia, and develop innovative approaches to fostering entry by high school students as well as under-represented minorities into the field of Neuroengineering.

Public Health Relevance

(Seeinstructions): The training program is being developed to support and train predoctoral candidates with educational and research interests in the field of Neuroengineering. The broad relevance stems from the opportunity to produce workforce of the future in this emergent, critically important scientific field with the expectation that these trainees will contribute to future scientific and academic advancements.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Special Emphasis Panel (ZEB1-OSR-C (J1))
Program Officer
Erim, Zeynep
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Biomedical Engineering
Schools of Medicine
United States
Zip Code
Herzfeld, David J; Vaswani, Pavan A; Marko, Mollie K et al. (2014) A memory of errors in sensorimotor learning. Science 345:1349-53
Siddique, Rezina; Thakor, Nitish (2014) Investigation of nerve injury through microfluidic devices. J R Soc Interface 11:20130676
McMullen, David P; Hotson, Guy; Katyal, Kapil D et al. (2014) Demonstration of a semi-autonomous hybrid brain-machine interface using human intracranial EEG, eye tracking, and computer vision to control a robotic upper limb prosthetic. IEEE Trans Neural Syst Rehabil Eng 22:784-96
Lim, Issel Anne L; Li, Xu; Jones, Craig K et al. (2014) Quantitative magnetic susceptibility mapping without phase unwrapping using WASSR. Neuroimage 86:265-79
Lim, Issel Anne L; Faria, Andreia V; Li, Xu et al. (2013) Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures. Neuroimage 82:449-69
Bhanpuri, Nasir H; Okamura, Allison M; Bastian, Amy J (2012) Active force perception depends on cerebellar function. J Neurophysiol 107:1612-20
Yang, In Hong; Siddique, Rezina; Hosmane, Suneil et al. (2009) Compartmentalized microfluidic culture platform to study mechanism of paclitaxel-induced axonal degeneration. Exp Neurol 218:124-8