Biology is in the midst of intellectual upheaval. An era dominated by the systematic identification and characterization of parts-genes, proteins, cells-is rapidly yielding to one focused on complex interaction networks, the principles of their design, and their role in the context of organismal fitness and natural selection. The emerging field of Systems Biology breaks with the past not only in the types of questions it asks, but also in the diverse disciplines it draws heavily upon, including mathematics, computer science, engineering, and physics. Here we outline Phase II in the development of a training program in Mathematical, Computational and Systems Biology that was initiated under Phase I of the Howard Hughes Medical Institute/NIBIB """"""""Interfaces"""""""" initiative. The program is a coordinated, interdisciplinary program designed to produce Ph.D.s that are prepared for careers in Systems Biology. Highlights of the program include an extensive didactic curriculum;a focus on critical thinking skills;an emphasis on collaboration and collaborative learning;close mentoring, opportunities to develop career skills;and active student involvement. The 38 program faculty members come from eleven different departments and five schools at the University of California, Irvine, and conduct research on diverse topics within Systems Biology. The program enjoys strong campus support and an administrative and intellectual home within an NIH-supported National Center for Systems Biology at UCI.

Public Health Relevance

Biological and biomedical research are increasingly focused on complex systems. By training the next generation of researchers in an interdisciplinary mode-blending biology with mathematics, computer science, engineering and physics, the proposed program will help future scientists and educators function effectively in this new research environment.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Institutional National Research Service Award (T32)
Project #
5T32EB009418-04
Application #
8257871
Study Section
Special Emphasis Panel (ZEB1-OSR-E (J1))
Program Officer
Baird, Richard A
Project Start
2009-04-01
Project End
2014-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
4
Fiscal Year
2012
Total Cost
$230,869
Indirect Cost
$13,191
Name
University of California Irvine
Department
Anatomy/Cell Biology
Type
Schools of Arts and Sciences
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Knight, Meghan B; Drew, Nancy K; McCarthy, Linda A et al. (2016) Emergent Global Contractile Force in Cardiac Tissues. Biophys J 110:1615-24
Drew, Nancy K; Johnsen, Nicholas E; Core, Jason Q et al. (2016) Multiscale Characterization of Engineered Cardiac Tissue Architecture. J Biomech Eng 138:
Kent, Alyssa G; Dupont, Chris L; Yooseph, Shibu et al. (2016) Global biogeography of Prochlorococcus genome diversity in the surface ocean. ISME J 10:1856-65
Quang, Daniel; Xie, Xiaohui (2016) DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res 44:e107
Konstorum, Anna; Hillen, Thomas; Lowengrub, John (2016) Feedback Regulation in a Cancer Stem Cell Model can Cause an Allee Effect. Bull Math Biol 78:754-85
Cinquin, Amanda; Chiang, Michael; Paz, Adrian et al. (2016) Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line. PLoS Genet 12:e1005985
Sosnik, Julian; Zheng, Likun; Rackauckas, Christopher V et al. (2016) Noise modulation in retinoic acid signaling sharpens segmental boundaries of gene expression in the embryonic zebrafish hindbrain. Elife 5:e14034
Roessler, Kyria; Takuno, Shohei; Gaut, Brandon S (2016) CG Methylation Covaries with Differential Gene Expression between Leaf and Floral Bud Tissues of Brachypodium distachyon. PLoS One 11:e0150002
Chiang, Michael; Hallman, Sam; Cinquin, Amanda et al. (2015) Analysis of in vivo single cell behavior by high throughput, human-in-the-loop segmentation of three-dimensional images. BMC Bioinformatics 16:397
Quang, Daniel X; Erdos, Michael R; Parker, Stephen C J et al. (2015) Motif signatures in stretch enhancers are enriched for disease-associated genetic variants. Epigenetics Chromatin 8:23

Showing the most recent 10 out of 40 publications