The second half of the last century produced a staggering wealth of information about the cellular and molecular processes of life. The quantity and quality of this data is ushering in a new mode of thinking in the biomedical sciences that relies heavily on mathematical and computational tools and on rigorous quantitative experimental methods. With increasing frequency, the analytical tools and experimental methods are not home grown within the life sciences, but are adopted from research in the physical sciences. This brave new world requires a new kind of researcher, one who easily moves between the bench and the workstation, one who is equally at ease with running microscopes as with running simulations, and one for whom building quantitative models and testing them by designing equally quantitative experiments comes naturally. The Quantitative Biology (QB) Program at Brandeis University brings together six different Ph.D. programs from four science departments in order to train students who can rise to this interdisciplinary challenge. QB is an official interdepartmental graduate program at Brandeis that has just completed its second full academic year of operation;the program currently has 21 enrolled students. QB leverages the strengths of existing disciplinary Ph.D. programs at Brandeis by bringing together students from these programs in a specialized curriculum that is designed to take advantage of the learning opportunities afforded by training in multi-disciplinary groups. Students admitted to graduate study in the Biochemistry, Biophysics &Structural Biology, Chemistry, Molecular &Cellular Biology, Neuroscience, or Physics Ph.D. programs and who choose the QB track will, upon successful completion, receive a Ph.D. degree in their chosen discipline """"""""with an additional specialization in Quantitative Biology"""""""". This approach provides the students with modern discipline-bridging training while providing the graduate with a Ph.D. credential that has proven value on the job market because it is in a recognized traditional discipline. Students typically enter the QB program in either the first or second years of their Ph.D. studies and remain affiliated with QB until they graduate. Each student selected for support by the training grant will be supported during years 2 and 3 of their studies.

Public Health Relevance

The goal of the Quantitative Biology program is to train Ph.D. scientists who are well equipped to bring quantitative experimental, computational, and mathematical methods from Physics and Chemistry to bear on important problems in biomedical research. It is anticipated that the work of these scientists will lead to improvements in public health by advancing basic research in directions that are not readily accessible to scientists who lack interdisciplinary training.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Special Emphasis Panel (ZEB1-OSR-E (J1))
Program Officer
Baird, Richard A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brandeis University
Schools of Arts and Sciences
United States
Zip Code
Herzog, Josiah J; Deshpande, Mugdha; Shapiro, Leah et al. (2017) TDP-43 misexpression causes defects in dendritic growth. Sci Rep 7:15656
Mohapatra, Lishibanya; Lagny, Thibaut J; Harbage, David et al. (2017) The Limiting-Pool Mechanism Fails to Control the Size of Multiple Organelles. Cell Syst 4:559-567.e14
Halpin, Jackson C; Street, Timothy O (2017) Hsp90 Sensitivity to ADP Reveals Hidden Regulation Mechanisms. J Mol Biol 429:2918-2930
Tetone, Larry E; Friedman, Larry J; Osborne, Melisa L et al. (2017) Dynamics of GreB-RNA polymerase interaction allow a proofreading accessory protein to patrol for transcription complexes needing rescue. Proc Natl Acad Sci U S A 114:E1081-E1090
Av?aro?lu, Bar??; Bronk, Gabriel; Li, Kevin et al. (2016) Chromosome-refolding model of mating-type switching in yeast. Proc Natl Acad Sci U S A 113:E6929-E6938
van der Feltz, Clarisse; Pomeranz Krummel, Daniel (2016) Purification of Native Complexes for Structural Study Using a Tandem Affinity Tag Method. J Vis Exp :
Putzig, Elias; Redner, Gabriel S; Baskaran, Arvind et al. (2016) Instabilities, defects, and defect ordering in an overdamped active nematic. Soft Matter 12:3854-9
Tompkins, Nathan; Fraden, Seth (2016) An inexpensive programmable illumination microscope with active feedback. Am J Phys 84:150-158
Wang, A L; Gold, J M; Tompkins, N et al. (2016) Configurable NOR gate arrays from Belousov-Zhabotinsky micro-droplets. Eur Phys J Spec Top 225:211-227
Halpin, Jackson C; Huang, Bin; Sun, Ming et al. (2016) Crowding Activates Heat Shock Protein 90. J Biol Chem 291:6447-55

Showing the most recent 10 out of 44 publications