Since 1943, the University of Rochester has distinguished itself as an internationally recognized center for excellence in research and training in toxicology. This recognition has been achieved in part by the successes of this training grant, which is now in its 34th year of funding. The present renewal application requests funding for 14 pre-doctoral and 4 postdoctoral trainees, to continue a program that is highly interdisciplinary, has a focus on clinical and translational approaches, and a strong emphasis on the basic principles that define the field of toxicology. The overall objective of this broad-based toxicology training program is to provide contemporary pre- and postdoctoral training in the environmental health sciences, such that the graduates are poised to assume significant leadership positions in academia, government, industry and other occupations related to toxicology, environmental health, and public policy. This program is housed within the Department of Environmental Medicine, but its focus is multidisciplinary and interdisciplinary. The 40 training faculty come from a total of 12 different departments within the School of Medicine and Dentistry. As such, this training program takes advantage of the great diversity of specialties and resources available at a major academic medical center by reaching beyond the immediate confines of a single basic science group to draw in exceptional faculty from other basic science and clinical departments. Faculty research programs span the entire spectrum of toxicology, from molecular mechanisms to cellular processes to whole animals and human populations. There are 7 major training areas: Neurotoxicology, Cardiovascular &Pulmonary Toxicology, Osteotoxicology, Molecular Modifiers of Toxicity, Immunotoxicology, Reproductive &Developmental Toxicology, and Stem Cell Toxicology &Epigenetics. This Training Program is distinguished by a long history of outstanding, cutting-edge research and training, the many accomplishments of its former and current students, fellows, and faculty, the remarkable collegiality and extensive research collaborations among its faculty members and trainees, an extensive base of research support, and by a strong institutional commitment to research and training in the environmental health sciences. The program is further enhanced by the presence of an NIEHS Environmental Health Sciences Center and a Division of Occupational Medicine within the Department of Environmental Medicine. Furthermore, the investigators have an NIH Clinical and Translational Sciences Institute, and a highly integrated Biomedical Sciences Graduate structure at the School of Medicine and Dentistry. There are presently 25 toxicology Ph.D. students in residence, with 6 new toxicology Ph.D. trainees starting in July or August, 2012, and 10 postdoctoral fellows currently in training. The overall goal is to educate the next generation of talented environmental health investigators whom are able to generate novel research findings, and then convert these findings into information, resources, or tools that can be used by public health and medical professionals, as well as the public, to improve overall health and well being. Public Health Relevance: The overall objective of this broad-based toxicology training program is to provide contemporary pre- and postdoctoral training in the environmental health sciences, such that graduates are poised to assume significant leadership positions in academia, government, industry and other occupations related to toxicology, environmental health, and public policy. The overall goal is to educate the next generation of talented environmental health investigators whom are able to generate novel research findings, and then convert these findings into information, resources, or tools that can be used by public health and medical professionals, as well as the public, to improve overall health and well being.

Public Health Relevance

The overall objective of this broad-based toxicology training program is to provide contemporary pre- and postdoctoral training in the environmental health sciences, such that graduates are poised to assume significant leadership positions in academia, government, industry and other occupations related to toxicology, environmental health, and public policy. The overall goal is to educate the next generation of talented environmental health investigators whom are able to generate novel research findings, and then convert these findings into information, resources, or tools that can be used by public health and medical professionals, as well as the public, to improve overall health and well being.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Institutional National Research Service Award (T32)
Project #
5T32ES007026-37
Application #
8692762
Study Section
Environmental Health Sciences Review Committee (EHS)
Program Officer
Shreffler, Carol K
Project Start
1978-07-01
Project End
2018-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
37
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Rochester
Department
Public Health & Prev Medicine
Type
School of Medicine & Dentistry
DUNS #
City
Rochester
State
NY
Country
United States
Zip Code
14627
Sipe, G O; Lowery, R L; Tremblay, M-È et al. (2016) Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat Commun 7:10905
Unnisa, Zeenath; Singh, Kameshwar P; Henry, Ellen C et al. (2016) Aryl Hydrocarbon Receptor Deficiency in an Exon 3 Deletion Mouse Model Promotes Hematopoietic Stem Cell Proliferation and Impacts Endosteal Niche Cells. Stem Cells Int 2016:4536187
Groves, Angela M; Johnston, Carl J; Misra, Ravi S et al. (2016) Effects of IL-4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation. Int J Radiat Biol :1-12
Begolly, Sage; Shrager, Peter G; Olschowka, John A et al. (2016) Fractionation Spares Mice From Radiation-Induced Reductions in Weight Gain But Does Not Prevent Late Oligodendrocyte Lineage Side Effects. Int J Radiat Oncol Biol Phys 96:449-57
Croasdell, Amanda; Sime, Patricia J; Phipps, Richard P (2016) Resolvin D2 decreases TLR4 expression to mediate resolution in human monocytes. FASEB J 30:3181-93
Beier, Eric E; Holz, Jonathan D; Sheu, Tzong-Jen et al. (2016) Elevated Lifetime Lead Exposure Impedes Osteoclast Activity and Produces an Increase in Bone Mass in Adolescent Mice. Toxicol Sci 149:277-88
Croasdell, Amanda; Lacy, Shannon H; Thatcher, Thomas H et al. (2016) Resolvin D1 Dampens Pulmonary Inflammation and Promotes Clearance of Nontypeable Haemophilus influenzae. J Immunol 196:2742-52
Reilly, Emma C; Martin, Kyle C; Jin, Guang-bi et al. (2015) Neonatal hyperoxia leads to persistent alterations in NK responses to influenza A virus infection. Am J Physiol Lung Cell Mol Physiol 308:L76-85
Beier, Eric E; Inzana, Jason A; Sheu, Tzong-Jen et al. (2015) Effects of Combined Exposure to Lead and High-Fat Diet on Bone Quality in Juvenile Male Mice. Environ Health Perspect 123:935-43
Winans, Bethany; Nagari, Anusha; Chae, Minho et al. (2015) Linking the aryl hydrocarbon receptor with altered DNA methylation patterns and developmentally induced aberrant antiviral CD8+ T cell responses. J Immunol 194:4446-57

Showing the most recent 10 out of 174 publications