The Interdisciplinary Training in Genes and the Environment program at the Harvard School of Public Health (HSPH) meets the critical need for well-trained scientists who have an understanding of, and commitment to, cutting-edge research at the intersection of molecular and environmental exposure biology with strong training in statistical and computational methods. The Training Program is based on active participation by 19 accomplished and experienced multidisciplinary faculty members, including environmental health scientists, molecular biologists, molecular epidemiologists, and computational biologists. The two interrelated goals of the proposed Training Program are: * To train true collaborative partners able to pursue methodological research that is motivated by, and helps to solve, difficult analytic issues that arise in studies of human environmental exposures and genetic susceptibility to complex diseases. * To encourage interdisciplinary research, especially in genetics and the various """"""""omics"""""""" arising from new methodologies for characterizing biological activity associated with environmental exposures in laboratory and population sciences. Pre-doctoral students will obtain the Ph.D. in Biological Sciences in Public Health (BPH), the public health doctoral program ranked first in the nation in the recent NRC analysis. The Ph.D. degree is awarded through the Graduate School of Arts and Sciences at Harvard University. Postdoctoral fellows will be mentored by two HSPH faculty to support and encourage cross-disciplinary training. The Program proposes continued support for eight pre-doctoral students and seeks to add one postdoctoral fellow per year for a total of two each year of the award. These postdoctoral trainees will have an advanced degree (Ph.D., M.D., M.D./Ph.D. or other doctoral degree) relevant to exposure biology/environmental health sciences or computational areas of genomics/proteomics and will have specific interest in cross-training research experience. All trainees in the Interdisciplinary Training in Genes and Environment Program will be provided an outstanding opportunity to become equally skilled in genomics, environmental health sciences, and quantitative methods in order to attain leadership roles in interdisciplinary studies of human genes and the environment, with the ultimate goal of serving public health interests in developing effective disease prevention and intervention strategies.

Public Health Relevance

The Training in Genes and the Environment Program trains true collaborative partners able to pursue methodological research that is motivated by, and helps to solve, difficult analytic issues that arise in studies of human environmental exposures and genetic susceptibility to complex diseases. It also encourages interdisciplinary research, especially in genetics and the various omics arising from new methodologies for characterizing biological activity associated with environmental exposures in laboratory and population sciences.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Institutional National Research Service Award (T32)
Project #
2T32ES016645-06A1
Application #
8667062
Study Section
Environmental Health Sciences Review Committee (EHS)
Program Officer
Shreffler, Carol K
Project Start
2008-07-01
Project End
2019-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
6
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Harvard University
Department
Genetics
Type
Schools of Public Health
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02115
Lee, Lang Ho; Andraski, Allison B; Pieper, Brett et al. (2017) Automation of PRM-dependent D3-Leu tracer enrichment in HDL to study the metabolism of apoA-I, LCAT and other apolipoproteins. Proteomics 17:
Charles, Khanichi N; Li, Min-Dian; Engin, Feyza et al. (2017) Uncoupling of Metabolic Health from Longevity through Genetic Alteration of Adipose Tissue Lipid-Binding Proteins. Cell Rep 21:393-402
Ilagan, Erika; Manning, Brendan D (2016) Emerging role of mTOR in the response to cancer therapeutics. Trends Cancer 2:241-251
Mendivil, Carlos O; Furtado, Jeremy; Morton, Allyson M et al. (2016) Novel Pathways of Apolipoprotein A-I Metabolism in High-Density Lipoprotein of Different Sizes in Humans. Arterioscler Thromb Vasc Biol 36:156-65
Knudsen, Nelson H; Lee, Chih-Hao (2016) Identity Crisis: CD301b(+) Mononuclear Phagocytes Blur the M1-M2 Macrophage Line. Immunity 45:461-463
McCarthy, Ryan C; Lu, Dah-Yuu; Alkhateeb, Ahmed et al. (2016) Characterization of a novel adult murine immortalized microglial cell line and its activation by amyloid-beta. J Neuroinflammation 13:21
Ferretti, Roberta; Bhutkar, Arjun; McNamara, Molly C et al. (2016) BMI1 induces an invasive signature in melanoma that promotes metastasis and chemoresistance. Genes Dev 30:18-33
Zhong, Jia; Cayir, Akin; Trevisi, Letizia et al. (2016) Traffic-Related Air Pollution, Blood Pressure, and Adaptive Response of Mitochondrial Abundance. Circulation 133:378-87
Jacobi, David; Liu, Sihao; Burkewitz, Kristopher et al. (2015) Hepatic Bmal1 Regulates Rhythmic Mitochondrial Dynamics and Promotes Metabolic Fitness. Cell Metab 22:709-20
Hine, Christopher; Harputlugil, Eylul; Zhang, Yue et al. (2015) Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 160:132-44

Showing the most recent 10 out of 62 publications