The Interdisciplinary Training in Genes and the Environment program at the Harvard School of Public Health (HSPH) meets the critical need for well-trained scientists who have an understanding of, and commitment to, cutting-edge research at the intersection of molecular and environmental exposure biology with strong training in statistical and computational methods. The Training Program is based on active participation by 19 accomplished and experienced multidisciplinary faculty members, including environmental health scientists, molecular biologists, molecular epidemiologists, and computational biologists. The two interrelated goals of the proposed Training Program are: * To train true collaborative partners able to pursue methodological research that is motivated by, and helps to solve, difficult analytic issues that arise in studies of human environmental exposures and genetic susceptibility to complex diseases. * To encourage interdisciplinary research, especially in genetics and the various "omics" arising from new methodologies for characterizing biological activity associated with environmental exposures in laboratory and population sciences. Pre-doctoral students will obtain the Ph.D. in Biological Sciences in Public Health (BPH), the public health doctoral program ranked first in the nation in the recent NRC analysis. The Ph.D. degree is awarded through the Graduate School of Arts and Sciences at Harvard University. Postdoctoral fellows will be mentored by two HSPH faculty to support and encourage cross-disciplinary training. The Program proposes continued support for eight pre-doctoral students and seeks to add one postdoctoral fellow per year for a total of two each year of the award. These postdoctoral trainees will have an advanced degree (Ph.D., M.D., M.D./Ph.D. or other doctoral degree) relevant to exposure biology/environmental health sciences or computational areas of genomics/proteomics and will have specific interest in cross-training research experience. All trainees in the Interdisciplinary Training in Genes and Environment Program will be provided an outstanding opportunity to become equally skilled in genomics, environmental health sciences, and quantitative methods in order to attain leadership roles in interdisciplinary studies of human genes and the environment, with the ultimate goal of serving public health interests in developing effective disease prevention and intervention strategies.

Public Health Relevance

The Training in Genes and the Environment Program trains true collaborative partners able to pursue methodological research that is motivated by, and helps to solve, difficult analytic issues that arise in studies of human environmental exposures and genetic susceptibility to complex diseases. It also encourages interdisciplinary research, especially in genetics and the various omics arising from new methodologies for characterizing biological activity associated with environmental exposures in laboratory and population sciences.

Agency
National Institute of Health (NIH)
Type
Institutional National Research Service Award (T32)
Project #
2T32ES016645-06A1
Application #
8667062
Study Section
Environmental Health Sciences Review Committee (EHS)
Program Officer
Shreffler, Carol K
Project Start
Project End
Budget Start
Budget End
Support Year
6
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Harvard University
Department
Genetics
Type
Schools of Public Health
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02115
Knudsen, Nelson H; Lee, Chih-Hao (2014) IL-21 and IRF4: A complex partnership in immune and metabolic regulation. Diabetes 63:1838-40
Du, Mengmeng; Kraft, Peter; Eliassen, A Heather et al. (2014) Physical activity and risk of endometrial adenocarcinoma in the Nurses' Health Study. Int J Cancer 134:2707-16
Humblet, Olivier; Korrick, Susan A; Williams, Paige L et al. (2013) Genetic modification of the association between peripubertal dioxin exposure and pubertal onset in a cohort of Russian boys. Environ Health Perspect 121:111-7
Schifano, Elizabeth D; Li, Lin; Christiani, David C et al. (2013) Genome-wide association analysis for multiple continuous secondary phenotypes. Am J Hum Genet 92:744-59
Stanya, Kristopher J; Jacobi, David; Liu, Sihao et al. (2013) Direct control of hepatic glucose production by interleukin-13 in mice. J Clin Invest 123:261-71
Byrne, Shaina L; Buckett, Peter D; Kim, Jonghan et al. (2013) Ferristatin II promotes degradation of transferrin receptor-1 in vitro and in vivo. PLoS One 8:e70199
Gallinetti, Jordan; Harputlugil, Eylul; Mitchell, James R (2013) Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem J 449:1-10
Madrigano, Jaime; Mittleman, Murray A; Baccarelli, Andrea et al. (2013) Temperature, myocardial infarction, and mortality: effect modification by individual- and area-level characteristics. Epidemiology 24:439-46
Nan, Hongmei; Du, Mengmeng; De Vivo, Immaculata et al. (2011) Shorter telomeres associate with a reduced risk of melanoma development. Cancer Res 71:6758-63
Simon, Kelly Claire; Munger, K L; Kraft, P et al. (2011) Genetic predictors of 25-hydroxyvitamin D levels and risk of multiple sclerosis. J Neurol 258:1676-82

Showing the most recent 10 out of 21 publications