This application is for a Training Program in the Pharmacological Sciences to support nine outstanding pre- doctoral students who will be working for a Ph.D. in the Departments of Pharmacology, Chemistry, Biochemistry &Molecular Genetics, Molecular Physiology &Biological Physics or Microbiology. Their research emphasis will be on scientific problems relevant to the biochemical and physiological effects of drugs and their mechanisms of action. The trainees will be selected primarily from among students entering the University of Virginia via the Molecular Medicine umbrella program and secondarily from students enrolled in the Medical Scientist Training Program or the Department of Chemistry who are receiving training in problems of pharmacologic relevance. The 35 faculty mentors are drawn from the Departments listed above as well as the Department of Medicine with an emphasis on individuals who collaborate with Pharmacology Department faculty. These faculty all direct robust research programs and collectively have trained hundreds of students and fellows. The academic units participating in this program are well equipped to provide state of the art re- search training in their respective disciplines. In addition, core facilities for advanced technologies such as small animal imaging, gene chip/microarrays, mass spectrometry, cell sorting, confocalimaging, computational support, etc.are available for enhancement of the research training of participating students. The goal of this Training Program is to prepare selected individuals for careers in basic research and teaching relevant to problems of pharmacologic importance.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007055-38
Application #
8292043
Study Section
Special Emphasis Panel (ZGM1-BRT-5 (TG))
Program Officer
Okita, Richard T
Project Start
1985-07-01
Project End
2013-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
38
Fiscal Year
2012
Total Cost
$236,722
Indirect Cost
$14,858
Name
University of Virginia
Department
Pharmacology
Type
Schools of Medicine
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Thiede, Benjamin R; Corwin, Jeffrey T (2014) Permeation of fluorophore-conjugated phalloidin into live hair cells of the inner ear is modulated by P2Y receptors. J Assoc Res Otolaryngol 15:13-30
Kennedy, Dylan P; McRobb, Fiona M; Leonhardt, Susan A et al. (2014) The second extracellular loop of the adenosine A1 receptor mediates activity of allosteric enhancers. Mol Pharmacol 85:301-9
Greenwald, Eric C; Redden, John M; Dodge-Kafka, Kimberly L et al. (2014) Scaffold state switching amplifies, accelerates, and insulates protein kinase C signaling. J Biol Chem 289:2353-60
Zimmerman, Mark W; McQueeney, Kelley E; Isenberg, Jeffrey S et al. (2014) Protein-tyrosine phosphatase 4A3 (PTP4A3) promotes vascular endothelial growth factor signaling and enables endothelial cell motility. J Biol Chem 289:5904-13
Sharlow, Elizabeth R; Wipf, Peter; McQueeney, Kelley E et al. (2014) Investigational inhibitors of PTP4A3 phosphatase as antineoplastic agents. Expert Opin Investig Drugs 23:661-73
Richardson, Chante L; Delehanty, Lorrie L; Bullock, Grant C et al. (2013) Isocitrate ameliorates anemia by suppressing the erythroid iron restriction response. J Clin Invest 123:3614-23
Perry, Heather M; Oldham, Stephanie N; Fahl, Shawn P et al. (2013) Helix-loop-helix factor inhibitor of differentiation 3 regulates interleukin-5 expression and B-1a B cell proliferation. Arterioscler Thromb Vasc Biol 33:2771-9
Sandilos, Joanna K; Chiu, Yu-Hsin; Chekeni, Faraaz B et al. (2012) Pannexin 1, an ATP release channel, is activated by caspase cleavage of its pore-associated C-terminal autoinhibitory region. J Biol Chem 287:11303-11
Mathews, Thomas P; Kennedy, Andrew J; Kharel, Yugesh et al. (2010) Discovery, biological evaluation, and structure-activity relationship of amidine based sphingosine kinase inhibitors. J Med Chem 53:2766-78
Tomsig, Jose L; Snyder, Ashley H; Berdyshev, Evgeny V et al. (2009) Lipid phosphate phosphohydrolase type 1 (LPP1) degrades extracellular lysophosphatidic acid in vivo. Biochem J 419:611-8

Showing the most recent 10 out of 36 publications