The goals of the Predoctoral Training Program in Genetics and Development are: to provide a solid and broad education in genetics, including molecular genetics, developmental genetics, and human genetics;to provide rigorous training in research;to develop a scholarly, professional attitude in the trainees. The program emphasizes experimental skills and critical thinking, as well as written and oral presentation of ideas and research findings. We take care to teach our students a rigorous scientific approach in the design of experiments and evaluation of data, and to maintain the highest ethical standards in their work. We encourage students to give and receive constructive criticism and challenge them to be self- critical in order to become capable, independent scholars. A Training Committee oversees administration of the program and monitors student progress through regular meetings and written reports of rotations, qualifying exams and thesis research advisory committees. There are currently 37 trainees.
We aim to recruit 6-8 new trainees each year. The duration of training is typically 6-6.5 years. Training consists of two years of didactic course work in prokaryotic and eukaryotic molecular genetics, biochemistry, developmental genetics, statistics, genetic approaches to biomedical problems, and responsible conduct in research. Three research rotations are done in the first year followed by research in a laboratory of choice. Students have a wide range of research opportunities across the entire Columbia University Medical Center Campus. A two-part qualifying examination in the second and third years takes the form of a research proposal that is defended in a written and oral examination, followed approximately 6 months later by a progress report, similarly defended in a written and oral examination. Students run their own internal seminar program and also participate in the regular departmental seminar series by inviting outside speakers. There is an annual retreat where all trainees are expected to present their work either as a platform presentation or a poster. During the course of training there are milestones at which the MA and MPhil degrees are awarded. With the successful defense of a research thesis, the PhD degree is awarded.

Public Health Relevance

The program goal is to train the next generation of biomedical researchers in areas of genetics and development with special reference to genetic influences on human health, development and disease. The research training includes a variety of basic and diseases-related areas with genetic components including cancer, diabetes, congenital defects, and heart and kidney disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007088-38
Application #
8284298
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Haynes, Susan R
Project Start
1975-07-01
Project End
2016-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
38
Fiscal Year
2012
Total Cost
$357,236
Indirect Cost
$16,980
Name
Columbia University (N.Y.)
Department
Genetics
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Borok, Matthew J; Papaioannou, Virginia E; Sussel, Lori (2016) Unique functions of Gata4 in mouse liver induction and heart development. Dev Biol 410:213-22
Riccio, Paul; Cebrian, Cristina; Zong, Hui et al. (2016) Ret and Etv4 Promote Directed Movements of Progenitor Cells during Renal Branching Morphogenesis. PLoS Biol 14:e1002382
McSweeney, K Melodi; Gussow, Ayal B; Bradrick, Shelton S et al. (2016) Inhibition of microRNA 128 promotes excitability of cultured cortical neuronal networks. Genome Res 26:1411-1416
O'Connell, Nichole E; Lelli, Katherine; Mann, Richard S et al. (2015) Asparagine deamidation reduces DNA-binding affinity of the Drosophila melanogaster Scr homeodomain. FEBS Lett 589:3237-41
Sallee, Maria D; Greenwald, Iva (2015) Dimerization-driven degradation of C. elegans and human E proteins. Genes Dev 29:1356-61
Betz, Regina C; Petukhova, Lynn; Ripke, Stephan et al. (2015) Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci. Nat Commun 6:5966
Sallee, Maria D; Aydin, Taner; Greenwald, Iva (2015) Influences of LIN-12/Notch and POP-1/TCF on the Robustness of Ventral Uterine Cell Fate Specification in Caenorhabditis elegans Gonadogenesis. G3 (Bethesda) 5:2775-82
Barber, Alison G; Castillo-Martin, Mireia; Bonal, Dennis M et al. (2014) Characterization of desmoglein expression in the normal prostatic gland. Desmoglein 2 is an independent prognostic factor for aggressive prostate cancer. PLoS One 9:e98786
DeStefano, Gina M; Kurban, Mazen; Anyane-Yeboa, Kwame et al. (2014) Mutations in the cholesterol transporter gene ABCA5 are associated with excessive hair overgrowth. PLoS Genet 10:e1004333
Pan, Kally Z; Saunders, Timothy E; Flor-Parra, Ignacio et al. (2014) Cortical regulation of cell size by a sizer cdr2p. Elife 3:e02040

Showing the most recent 10 out of 65 publications