This project supports the training of nine students annually at Brandeis University in the field of genetics, who will be appointed in the second year of their Ph. D. training. This grant has played a central role in the education of a highly productive group of interactive graduate students actively involved in genetics research in problems relating to molecular, cell, and developmental biology and neuroscience, with relevance to the mechanisms and treatment of human disease. The Training Grant Faculty are drawn from highly collaborative and interdisciplinary researchers in the Departments of Biology and Biochemistry. Students work in well-funded and productive laboratories that are supported by recently upgraded core facilities in DNA and protein analysis, proteomics, genomics, microscopy and mouse and viral transgenics. The proposed program emphasizes rigorous training to develop research and other professional skills including scientific literacy, writing and oral communication and quantitative approaches. The Ph. D. program has a core curriculum of molecular biology, cell biology and ethics and advanced genetics courses, which includes molecular genetics, neurogenetics, population genetics and genomics, epigenetics and human genetics. These core courses are supplemented by elective courses in biochemistry, structural biology, developmental biology, mathematical modeling or neuroscience and courses concerning human diseases such as cancer, infectious disease, neurological and development disorders. Trainees are appointed based on the strength of their academic records and research potential and are supported for two to three years. Progress of the students is closed monitored by a committee of Training Grant Faculty selected for each student. Qualifying examinations at the end of the first and second years provide a means to evaluate each student's ability to frame questions and propose research solutions in their emerging area of expertise and in an outside field. The training of students is supplemented by seminars and journal clubs, featuring a wide variety of successful investigators in diverse areas of biological research. A number of professional development activities feature valuable personal discussions that assist each student's career planning. Special opportunities for Trainees include enhanced personal interactions with speakers and participation in an annual Genetics Symposium. In addition, Trainees work with Training faculty in the planning and implementation of these activities. The program is assessed yearly through online surveys and personal discussions with Trainees. This, and the small size and interconnectedness of students and faculty, provides training responsive to the needs of each student in a first-class research setting.

Public Health Relevance

This project trains nine Ph. D. students yearly in the field of genetics at Brandeis University. Along with intensive coursework and research training, students work on basic mechanisms of disease and its treatment, including neurodegeneration, developmental disorders, heart disease, cancer and infectious disease. This training features the development of skills necessary for students to become productive and independent contributors in the fields of scientific and medical research.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Carter, Anthony D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brandeis University
Schools of Arts and Sciences
United States
Zip Code
Huang, Yu-Hwa; Zhu, Chen; Kondo, Yasuyuki et al. (2015) CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517:386-90
Post, Christina; Clark, Josef P; Sytnikova, Yuliya A et al. (2014) The capacity of target silencing by Drosophila PIWI and piRNAs. RNA 20:1977-86
Tetrault, Shana M; Rice, John E; Wangh, Lawrence J et al. (2014) Single-Tube Mutation Scanning of The Epidermal Growth Factor Receptor Gene Using Multiplex LATE-PCR and Lights-On/Lights-Off Probes. J Mol Biomark Diagn 5:1000175
Gould, Christopher J; Chesarone-Cataldo, Melissa; Alioto, Salvatore L et al. (2014) Saccharomyces cerevisiae Kelch proteins and Bud14 protein form a stable 520-kDa formin regulatory complex that controls actin cable assembly and cell morphogenesis. J Biol Chem 289:18290-301
Poukkula, Minna; Hakala, Markku; Pentinmikko, Nalle et al. (2014) GMF promotes leading-edge dynamics and collective cell migration in vivo. Curr Biol 24:2533-40
Rossio, Valentina; Kazatskaya, Anna; Hirabayashi, Mayo et al. (2014) Comparative genetic analysis of PP2A-Cdc55 regulators in budding yeast. Cell Cycle 13:2073-83
Clark, Josef P; Lau, Nelson C (2014) Piwi Proteins and piRNAs step onto the systems biology stage. Adv Exp Med Biol 825:159-97
Mukherjee, Konark; Slawson, Justin B; Christmann, Bethany L et al. (2014) Neuron-specific protein interactions of Drosophila CASK-? are revealed by mass spectrometry. Front Mol Neurosci 7:58
Sytnikova, Yuliya A; Rahman, Reazur; Chirn, Gung-Wei et al. (2014) Transposable element dynamics and PIWI regulation impacts lncRNA and gene expression diversity in Drosophila ovarian cell cultures. Genome Res 24:1977-90
Pirez, Nicolas; Christmann, Bethany L; Griffith, Leslie C (2013) Daily rhythms in locomotor circuits in Drosophila involve PDF. J Neurophysiol 110:700-8

Showing the most recent 10 out of 69 publications