Continuation of a Genetics Training Program is proposed at the University of Colorado, Boulder. Support is requested for 18 predoctoral positions, within a program that includes over 100 graduate students and 107 postdoctoral trainees in two departments. The interdisciplinary training faculty of 35 includes 25 members of the Department of Molecular, Cellular, and Developmental Biology (MCDB), 6 members of the Biochemistry Program in the Department of Chemistry and Biochemistry (BCHM), and 4 geneticists from other departments. Faculty research interests are diverse, focusing on fundamental problems of life processes at the levels of molecules, cells, developing organisms, and evolution. Recent additions to the research space in MCDB and BCHM have augmented the training facilities available to the program, which include outstanding shared microscopy and image-processing facilities and a variety of support services. Trainees are admitted from a strong national pool of over 100 applicants annually, most with excellent undergraduate preparation including research experience. Following an intensive introductory course and three research rotations during the first year, students choose a faculty mentor and accomplish the remainder of their training primarily through original research in a stimulating and demanding intellectual environment, which includes advanced course offerings as well as active seminar programs and a biennial student-sponsored symposium. Most students complete the program in 5 to 6 years and go on to postdoctoral training and careers in academia, biomedical research institutions, or biotechnology industry.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007135-38
Application #
8287177
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Haynes, Susan R
Project Start
1975-07-01
Project End
2013-08-31
Budget Start
2012-07-01
Budget End
2013-08-31
Support Year
38
Fiscal Year
2012
Total Cost
$464,511
Indirect Cost
$29,716
Name
University of Colorado at Boulder
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
007431505
City
Boulder
State
CO
Country
United States
Zip Code
80309
Bernet, Jennifer D; Doles, Jason D; Hall, John K et al. (2014) p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med 20:265-71
Avena, Jennifer S; Burns, Shannon; Yu, Zulin et al. (2014) Licensing of yeast centrosome duplication requires phosphoregulation of sfi1. PLoS Genet 10:e1004666
Trausch, Jeremiah J; Batey, Robert T (2014) A disconnect between high-affinity binding and efficient regulation by antifolates and purines in the tetrahydrofolate riboswitch. Chem Biol 21:205-16
Meyer, Regis E; Kim, Seoyoung; Obeso, David et al. (2013) Mps1 and Ipl1/Aurora B act sequentially to correctly orient chromosomes on the meiotic spindle of budding yeast. Science 339:1071-4
Friedman, Jonathan R; Dibenedetto, Jared R; West, Matthew et al. (2013) Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature. Mol Biol Cell 24:1030-40
English, Amber R; Voeltz, Gia K (2013) Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol 5:a013227
Stoddard, Colby D; Widmann, Jeremy; Trausch, Jeremiah J et al. (2013) Nucleotides adjacent to the ligand-binding pocket are linked to activity tuning in the purine riboswitch. J Mol Biol 425:1596-611
English, Amber R; Voeltz, Gia K (2013) Rab10 GTPase regulates ER dynamics and morphology. Nat Cell Biol 15:169-78
Trausch, Jeremiah J; Ceres, Pablo; Reyes, Francis E et al. (2011) The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure 19:1413-23
Zurek, Nesia; Sparks, Lenore; Voeltz, Gia (2011) Reticulon short hairpin transmembrane domains are used to shape ER tubules. Traffic 12:28-41

Showing the most recent 10 out of 73 publications