The purpose of Washington University's Medical Scientist Training Program is to provide in-depth training in the techniques of modern biomedical research and clinical medicine for individuals who wish to pursue careers as physician-scientists in academic settings. Research training is carried out in the interdisciplinary graduate programs of the Department of Biomedical Engineering and the Division of Biology and Biomedical Sciences, and the Departments of Anthropology and Physics. The basic components of the MSTP are: 1) two years of the preclinical medical school curriculum;2) coursework in a biomedically-relevant discipline;3) three or more years of original hypothesis-driven research leading to a doctoral thesis;and 4) 15-24 months of clinical training. The M.D. and Ph.D. degrees are awarded jointly at the successful completion of these components. Upon completion of postgraduate training, MSTP alumni will be prepared to enter the workforce as physician-scientists. The vast majority of alumni will join the faculty of the nation's medical schools, where they will treat patients, teach and conduct cutting-edge research that has relevance to human health and disease. Others will contribute to the biomedical research enterprise from positions in government labs, biotech firms and the pharmaceutical industry. We seek renewal of the National Research Service Award-Medical Scientist (T32 GM07200) to provide critical support for the training of physician-scientists. We propose to appoint 55 students annually to this grant for 36 months of support each. The remainder of the students'training will be supported by funds available to Washington University. Our goal is to graduate 20-25 MSTP students each year over the period of this grant.

Public Health Relevance

Washington University's MSTP trains future physician-scientists for careers in academic medicine, where they treat patients, teach medical students, and conduct cutting-edge research that improves human health and eradicates disease.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Hagan, Ann A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Internal Medicine/Medicine
Schools of Medicine
Saint Louis
United States
Zip Code
Zhao, Diana Y; Lim, Kian-Huat (2017) Current biologics for treatment of biliary tract cancers. J Gastrointest Oncol 8:430-440
Lerman-Sinkoff, Dov B; Sui, Jing; Rachakonda, Srinivas et al. (2017) Multimodal neural correlates of cognitive control in the Human Connectome Project. Neuroimage 163:41-54
Patel, Swapneel J; Zhao, Guoyan; Penna, Vinay R et al. (2017) A Murine Herpesvirus Closely Related to Ubiquitous Human Herpesviruses Causes T-Cell Depletion. J Virol 91:
Ban, Norimitsu; Siegfried, Carla J; Lin, Jonathan B et al. (2017) GDF15 is elevated in mice following retinal ganglion cell death and in glaucoma patients. JCI Insight 2:
Hodzic, Zerina; Schill, Ellen Merrick; Bolock, Alexa M et al. (2017) IL-33 and the intestine: The good, the bad, and the inflammatory. Cytokine 100:1-10
Kaufman, Daniel M; Wu, Xia; Scott, Barbara A et al. (2017) Ageing and hypoxia cause protein aggregation in mitochondria. Cell Death Differ 24:1730-1738
Huynh, Tien-Phat V; Liao, Fan; Francis, Caroline M et al. (2017) Age-Dependent Effects of apoE Reduction Using Antisense Oligonucleotides in a Model of ?-amyloidosis. Neuron 96:1013-1023.e4
Pittman, William E; Sinha, Drew B; Zhang, William B et al. (2017) A simple culture system for long-term imaging of individual C. elegans. Lab Chip 17:3909-3920
Mah, Annelise Y; Rashidi, Armin; Keppel, Molly P et al. (2017) Glycolytic requirement for NK cell cytotoxicity and cytomegalovirus control. JCI Insight 2:
Sala-Rabanal, Monica; Yurtsever, Zeynep; Berry, Kayla N et al. (2017) Modulation of TMEM16A channel activity by the von Willebrand factor type A (VWA) domain of the calcium-activated chloride channel regulator 1 (CLCA1). J Biol Chem 292:9164-9174

Showing the most recent 10 out of 356 publications