This is a proposal requesting continuing support for integrative predoctoral training of physician-scientists attaining combined M.D. and Ph.D. degrees through the University of Washington Medical Scientist Training Program (UW MSTP). The overall goal is to identify, develop, recruit, train, inspire, and mentor the next generation o a highly well-qualified and broadly diverse group of physician-scientists, reflecting the composition of our nation, who will be equipped to bridge the gap between the basic sciences and its translational application and who will be prepared to help usher in exciting and revolutionary advances in the understanding and treatment of known and emerging diseases. As the only MSTP representing a vast geographic swatch of the United States, our program is amongst the most longstanding of NIH-funded MSTPs yet continues to evolve under a new generation of program leadership alongside other innovative recently introduced changes. The program is currently intended to enroll 10 new trainees each year for a curriculum designed to be completed in 8 years, resulting in a steady-state of about 80 students. The program integrates medical and basic science training in which students participate in medical school and graduate school courses while also completing MSTP-specific coursework as well as tailored laboratory and clinical training, along with training in the ethical conduct of research, with approximately one-quarter of trainees instantly engaged in the basic sciences phase of medical school, one-half completing graduate coursework and dissertation research, and one-quarter completing medical school clinical clerkships. At any given time, 29 of the trainees will be supported by this grant, with the remainder of funding being provided by trainee NRSA or equivalent awards, other institutional training grants, mentor research awards, and scholarships or other institutional support. The Fred Hutchinson Cancer Research Center contributes a major component of faculty resources and training. Other participating institutions include Seattle Biomed, Seattle Children's Research Institute, and the Benaroya Research Institute. All biomedical and basic science research disciplines are represented. Major pan-institutional participating programs and departments include the Molecular and Cellular Biology Program, the Neurobiology and Behavior program, and Departments of Genome Sciences, Bioengineering, Global Health, Immunology, Pathology, Physiology and Biophysics, Pharmacology, and Biostatistics. The program is backed by enormous institutional support, and a core of 69 highly distinguished faculty selected from among a legion at participating institutions are devoted to mentoring trainees and administrating the program. Graduates of our program typically complete clinical residency and postdoctoral fellowship subspecialty training and assume leadership positions at prestigious academic medical centers and research institutions worldwide.

Public Health Relevance

The goal of the University of Washington Medical Scientist Training Program is to train outstanding physician-scientists who will earn both M.D. and Ph.D. degrees following approximately 8 years of study in the classroom, laboratory, and clinic. Graduates will be prepared to pursue academic research careers, in order to advance the understanding and treatment of human disease and better the health of all people.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007266-44
Application #
9517945
Study Section
NIGMS Initial Review Group (TWD)
Program Officer
Maas, Stefan
Project Start
1975-07-01
Project End
2019-06-30
Budget Start
2018-07-01
Budget End
2019-06-30
Support Year
44
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Washington
Department
Pathology
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Vandeven, Natalie; Lewis, Christopher W; Makarov, Vladimir et al. (2018) Merkel Cell Carcinoma Patients Presenting Without a Primary Lesion Have Elevated Markers of Immunity, Higher Tumor Mutation Burden, and Improved Survival. Clin Cancer Res 24:963-971
Paulson, Kelly G; Park, Song Youn; Vandeven, Natalie A et al. (2018) Merkel cell carcinoma: Current US incidence and projected increases based on changing demographics. J Am Acad Dermatol 78:457-463.e2
Williams, Katherine L; Wang, Bingjie; Arenz, Dana et al. (2018) Superinfection Drives HIV Neutralizing Antibody Responses from Several B Cell Lineages that Contribute to a Polyclonal Repertoire. Cell Rep 23:682-691
Campbell, Amy E; Shadle, Sean C; Jagannathan, Sujatha et al. (2018) NuRD and CAF-1-mediated silencing of the D4Z4 array is modulated by DUX4-induced MBD3L proteins. Elife 7:
Badeau, Barry A; Comerford, Michael P; Arakawa, Christopher K et al. (2018) Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nat Chem 10:251-258
Wallace, Arianne S; Hudac, Caitlin M; Steinman, Kyle J et al. (2018) Longitudinal report of child with de novo 16p11.2 triplication. Clin Case Rep 6:147-154
Kasinathan, Sivakanthan; Henikoff, Steven (2018) Non-B-Form DNA Is Enriched at Centromeres. Mol Biol Evol 35:949-962
Campbell, Amy E; Belleville, Andrea E; Resnick, Rebecca et al. (2018) Facioscapulohumeral dystrophy: activating an early embryonic transcriptional program in human skeletal muscle. Hum Mol Genet 27:R153-R162
Seo, Aaron; Steinberg-Shemer, Orna; Unal, Sule et al. (2018) Mechanism for survival of homozygous nonsense mutations in the tumor suppressor gene BRCA1. Proc Natl Acad Sci U S A 115:5241-5246
Doud, Michael B; Lee, Juhye M; Bloom, Jesse D (2018) How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin. Nat Commun 9:1386

Showing the most recent 10 out of 404 publications